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ABSTRACT

This report describes two new techniques for

PR o B

characterization of damping in flber reinforced composite

-
-

materials and the application of these techniques to the study
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of improvement and optimization of damping. Flexural and

A¢

extensional vibration tests are used for determination of

C
3

complex moduli of aligned discontinuous fiber composite and

off-axis fiber composite specimens, respectively. The results

»

from tests on graphite/epoxy, Kevlar/epoxy and boron/epoxy

-
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composites are then compared with theoretical predictions from

’ PRI A

micromechanics models based on a single fiber. The analytical
model is fitted to the experimental results by varying certain

parameters that have uncertainties associated with them. It

J
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T

14

is shown that improved damping can be obtained with very low
fiber aspect ratios, and that even better damping properties

are possible with off-axis fibers.
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Figure 3.35. Block diagram of instrumentation for extensional
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Figure 3.36. Equipment used with the extensional vibration
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Figure 5.12. Loss factor vs fiber aspect ratio for boron/epoxy
without curve fitting.
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Figure 5.15. E";, /E"m vs fiber aspect ratio for boron/epoxy
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Figure 5.19. Loss factor vs fiber aspect ratio for
graphite/epoxy with curve fitting.
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Figure 5.20. Loss factor vs fiber aspect ratio for Kevlar/epoxy
with curve fitting.
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Figure 5.21. Loss factor vs fiber aspect ratio for boron/epoxy
with curve fitting.
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Figure 5.22. E"; /E", vs fiber aspect ratio for graphite/epoxy
with curve fitting.
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Figure 5.24. E",/E" vs fiber aspect ratio for boron/epoxy with

curve fitting.
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ratio and frequency, for graphite/epoxy composite.

® % @ @ P O S S 9 eSS e S L L O NI TN LT ST AL EEE NS AN E OSSP EO O s sa

178
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Figure 6.3. E'y /E' vs fiber direction for continuous
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Figure 6.14. Loss factor vs fiber direction for discontinuous
graphite/epoxy, with curve fitting.
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Figure 6.21. Tridimensional plot of E", /E" vs fiber aspect
ratio and fiber direction, for grapgite/epoxy composite.
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1.0 INTRODUCTION

"A composite material is a material system composed cf a
mixture or combination of two or more nacroconstituents differ-
ing in form and/or material composition that are essentially
insoluble in each other" [1]]. One of the constituents is a
continuous phase known as the matrix and the other(s) is
discontinuous and usually stronger and harder than the contin-
uous phase. It is called the reinforcement or reinforcing mate-
rial [2]. Matrix materials vary from very soft organic foams to
glasses, ceramics and metalli¢c matrices. Reinforcing agents
range from elastomers and cotton to extremely hard intermetal-
lic whiskers with shapes varying from very small, round or
angular particles to continuous, very long fibers. The compos-
ite materials exhibit the best qualities of their constituents.

Composite materials can be of two types: fiber reinforced
or particle reinforced. The fiber reinforced composite materi-
als can be single layered laminae or multilayered laminates.
The layers can have continuous oOr discontinuous fiber
reinforcement with preferred orientation (off-axis) or unidi-
rectional fibers (aligned). Hybrid composites having either
mixed fiber materials or mixed continuous/discontinuous fibers

are also common.

]The numbers in square brackets denote entries in the list
of References,
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Advanced fiber reinforced composite materials [3] with
fibers such as boron or graphite brought improvemenis in
strength and stiffness. Organic fiber reinforcements such as
aramid improves damping characteristics, which means even more
versatility for composite materials. The use of advanced
composite materials is greatly increasing day by day. The r;nge
of applications goes from aerospace/aircraft/automotive struc-
tures to printed circuit boards, prosthetic devices, golf
clubs, and tennis racquets [4].

Widespread use of composite materials is possible because
they allow the designer to use their anisotropy to tailor the
properties to reach specific requirements of the final product.
This includes high strength applications, high stiffness appli-
cations, low thermal conductivity and thermal expansion appli-
cations, corrosion-resistant and dent-resistant applications,
and decigns where weight reductions or part consolidation are
required.

A lot of work has been done on improvement and optimiza-
tion of the strength and stiffness of composite materials
[1,2,5], but many of the applications already outlined also
require good vibration damping properties [4,6,7].

Damping is a measure of the total energy dissipated in any
vibrating structure, so it is important to mention the primary

sources of energy dissipation in fiber reinforced polymeric

matrix materials.
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It appears that the viscoelastic behavior of the bulk
matrix and the interface, and the friction at the interface
caused by relative motion between matrix and fiber are the
primary sources for the good damping characteristics of these
materials. Both effects are significant in discontinuous fiber
composites, since high shear stresses are developed at the
fiber matrix interface when the material is subjected to a
cyclic strain. The matrix near the end of the short fibers
undergoes a high cyclic shear strain that produces a signif-
icant viscoelastic energy loss.

The shear stress concentration may induce plastic effects
as well as partial debonding at the fiber matrix intexface that
could result in slip between fiber and matrix with correspond-
ing frictional losses. It is desirable to have a strong inter-
facial bond such that slip at the interface can be avoided,
since this adversely affects the strength and stiffness of the
composite.

In conclusion, the most viable mechanisms of enhanced
energy dissipation appears to be the shear deformation in the
matrix caused by shear stress concentration near the fiber ends
[6], and the shear stress due to off-~axis coupling effects, as
the experimental results show.

Based on the stress transfer mechanism between fiber and
the matrix, internal damping can be improved and optimized by
varying several parameters: fiber aspect ratio

{length/diameter), fiber matrix modulus ratio E'f/E'm , fiber




! volume fraction, v¢, and fiber direction. Even more, random
fiber orientation and hybridization appear to cause interlami-
nar shear stresses that may be additional sources of energy

; dissipation [8,9,10].

: The damping properties of continuous fiber reinforced
composites have been studied by several authors [11,12,13,14],
but, as mentioned earlier, the possibility of improving and

'f even optimizing the damping characteristics of composites using

short reinforcing fibers [6,15,16], the lack of wvalid data on

damping and the interest and support of the U.S. Air Force

Office of Scientific Research, gave the author the motivation

for this research.

The research described here is constrained to the improve-
ment and optimization of internal damping of fiber reinforced
composite materials by variation of fiber aspect ratio, type of
fiber reinforcement and fiber direction. The present disserta-
tion includes the development of techniques for fabrication of
composite material laminated plates by using an autoclave style
press cure and the development of a faster and more accurate
damping measurement technigque using an impulsive force, as
described in Chapter 3.

The measured static and dynamic properties of bare resin

specimens that are used in the micromechanical model of a

b aTE A

single round fiber surrounded by a cylindrical matrix, as

explained in Chapter 2, are included in Chapter 4.
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The experimental data and corresponding correlation with
the theoretical model for three advanced composite materials:
graphite/epoxy, Kevlar1/epoxy and boron/epoxy in aligned

contiruous and discontinuous fiber configqurations are given in

Chapter 5,

Finally, results from tests done on off-axis fiber speci-
mens of graphite/epoxy and Kevlar/epoxy are compared with pred-

ictions in Chapter 6.

]Kevlar is a proprietary aramid fiber produced by E.I.
duPont de Nemours, Inc., Wilmington, Delaware.
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2.0 BACKGROUND

This chapter 1is written with the objective of reviewing

the theory involved in the development of the present research.

2.1 PREDICTION OF COMPLEX MODULI FOR COMPARISON WITH DAMPING

MEASUREMENTS

The purpose of this section is to present a theoretical
approach to the prediction of the composite complex moduli from
those of the constituent materials (matrix and fibers) for
comparison, in later chapters, with measured composite proper-
ties. The analysis of internal damping and dynamic stiffness
for aligned discontinuous fiber reinforced composite materials
was based on the complex moduli as established in [6].

The complex modulus of a viscoelastic material can be

defined in terms of the storage and loss moduli [17].

E* = E' + iE" (2.1)

Where the storage modulus, E', is related to the stored

energy per unit volume, U, by Eq. 2.2,

U= e’E (2.2)

........

e Ll b ahbis RMode Ll  beivstsaru s
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and the loss modulus, E" is related to the specific damping

energy, D, by Eq. 2.3.

D = ne?E" (2.3)

The damping property, or loss factor, of materials is
defined by the ratio of the energy dissipated per cycle or

damping energy to strain energy, Egqg. 2.4.

(2.4)

The complex modulus generally depends on frequency. The
real part, or elastic modulus, 1is generally less frequency
dependent than is the imaginary part [18,19 ]. Experimental
results shown in Chapter 4 for neat resin specimens, and in
Chapter 5 for the composite material specimens tested, verify
this prediction. In the same way, the complex modulus is
temperature dependent [20] and care was taken in performing all
the experimental work at the same ambient conditions.

The analytical model was based on the Cox stress distrib-
ution [21] which assumes:

a.— A round fiber surrounded by a cylindrical matrix under

extensional load, (Fig. 2.1).

b.- Fiber and matrix are isotropic. In order to fit the exper-

imental data to the analytical model, this assumption had
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to be modified as shown later in this chapter, so that the
t fibers are considered to be anisotropic.
c.- A perfect bond exists between the fiber and the matrix.
! d.- There 1is no load transfer through the ends of the fiber,
t and,
e.~- The transfer of load from the matrix to the fiber depends
upon the difference between the actual displacement at a
point on the interface and the displacement that would

exist if the fiber were absent [22,23,24].

' The interfacial shear stress, 7 , and 1longitudinal fiber
: stress, ¢, obtained by Cox were used by Gibson, et.al [6] as a
starting point to find the solution for the complex modulus by
two approaches, the Energy Method and the Force-Balance method.

The shear stress is:

réE%eB sinh[g(2/2 - x)]
' T ® e e (2.5)

2r cosh(82/2)

And the longitudinal stress is:

i

eE% 1 - ;osh[u(z/Z - x)]} (2.6)

Of
cosh(ge/2)

Sy F FTEEE. .

Where B is:

v.r

V..
[ep)}
™o

l

R (2.7)
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2.1.1 ENERGY APPROACH

For the first approach, the stresses from Egs. 2.5 and 2.6
are used to find the energy stored in the matrix and fiber and
the resulting longitudinal compiex modulus 1in terms of its
component storage and loss moduli [17].

It is assumed that the matrix is linearly viscoelastic and
that the interface has the same viscoelastic properties as that
of the bulk matrix. It is stated that the strain energy is
stored in b¢.ad constituent materials but the dissipation of

energy takes place only in the matrix, (i.e., ng = 0). Thus,

ot o
Hf + Hm
Since nf= 0, ¢t ¢
_ "m'n
N = (2.8)
Hf4 W
m
After some .nipulation (6], the longitudinal storage
modulus is given by:
£ E; £, v v :
L. _f Ve r v vl . jpesinh(se) + 82 (2.9)
gn gm q“ e 32[(R /ro) 1] 1 + coshgag
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Where
2 402
.. 1 - vf(3R /ro - 2) (2.10)
ve(R?/r2) -1 )
and the longitudinal loss modulus is given by
EL Ef 1 tanh(82/2) 1
—- = Vo {._- - +1} (2.11)
E Ey 2L(RZ/r2) - 1] BL/2 cosh?(g82/2)

The ratio R/r0 may be expressed in terms of the fiber
volume fraction for a specified packing array.

For a hexagonal array:

(R )2 - n

. IYERR (2.12)
o 2/3 Ve

For a square array:
Ry2. (2.13)
o 4 V¢

-y, -~

[

B "

§ RPN

LA RN A
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2.1.2 FORCE-BALANCE APPROACH

In this approach, static equilibrium, geometric compat-
ibility, and the elastic-viscoelastic correspondence principle M
(18] are used to obtain the complex moduli. In this derivation,
the fibers are assumed to contribute to the energy dissipation
and the fiber loss factor is non-zero.

Based on the fiber stress distribution (Eq. 2.6) the aver-

age fiber stress can be written as:

_ 1 /2 o tanh(82/2)
—— [ 1" ogdy = et [l - —"'] (2.14)

272 0 eg/2

e

Considering static equilibrium, the total longitudinal
stress applied to the composite is:

5 s Ele - Bv, 4 ;
op = Ele =ogVe oy o (2.15)

The extensional strain for composite, fiber and matrix are

i assumed to be equal. The longitudinal storage modulus and loss

modulus are then:

~ag—y e ¥ v,

tanh(22/2) E;vf
E) = Elv, [1 - J - (ne. - ng)
L (82/2) 2 v f

almmms ¢ .

(2.16)

.t'.a_n.r}.n.(_?_g_/.z.) - e __l“_____ ] + E.V
m '

(ge/2) cosh?(g2/2) m ..

S AERELYS S L X _ N I LA N ..
D

e

................................................
.........................
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v
E ' and E
! ! £ c tanh(azlz)] Eeve : )
| = Egve [1 - + N =N
- Lo s (82/2) 2z o
: f (2.17)
i [tanhn(BE/Z)_ 1 ]+ E;Vm
" (B2/2) cosh?(82/2)
e

aTaTar

“x-

ML

From these equations it can be seen that when the fiber

Faf Mo

loss factor is egual to zero, Egs. 2.16 and 2.17 will be simi-

lar to Egs. 2,9 and 2.11 obtained with the enc¢rgy method. The

.

force balance approach was used for the analysis of damping of

composite materials as explained later in chapters 5 and 6.

Both analytical methods predict an optimum fiber aspect

EARA LAASAARS, Ay

SRS,

ratio (ratio of the length to diameter of the fiber) for maxi-

I

mum damping {6 ]. This prediction was one of the main reasons

" /AT

for this research, because this analytical result had to be

checked against experimental values.

TR

2.2 OFF-AXIS ANALYSIS

The previous analysis was used for the optimization of

: internal damping of fiber reinforced polymer composite materi-
als when the applied load is parallel to the fiber direction.

The following analysis will consider the variation and possible

optimization of internal damping when the applied 1load is not

S TR mm e N AT VY Y LT R P,

v

v

: parallel to the fiber direction.
‘
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Again the Force-Balance approach [6] and the elas-
tic-viscoelastic correspondence principle [18] are used to
obtain the equation for storage modulus, loss factor and loss
modulus along the fiber direction [25].

The stress-strain relations for a lamina of arbitrary
orientation under constant environmental conditions are given

by
{ehyy = [Siol (2.18)

Where

! - T

[s] = [T] [S)[T] (2.19)

is the off-axis compliance matrix, [S] is the compliance matrix

' along the fiber direction, and

cos?o sin?g 2¢0s6sin6
[T] = | sin%o cos?8 -2cos05sing (2.20)
-sinAcosn sinecoss cos?a-sinc

is the matrix that accounts for the tensor transformation of

stresses and strains from the x axis to the principal axes

i (Fig. 2.2).

-

r

P/ a e

Py s oA 8 IR 4
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[T]T is the matrix transpose of [T].

Each of the terms Sij of the compliance matrix is a func-
tion of the engineering constants [3]. For the case of isotrop-
ic materials there are two such constants, the elastic modulus
E and Poisson's ratio . For an orthotropic material in plane
stress there are four independent material properties: the
longitudinal modulus, EL , the transverse modulus, Eq, the
in-plane shear modulus,(&T, and the major Poisson's ratio,

Vit

The apparent modulus, E, , along the direction of the
applied stress is given in Eg. 2.21 as a function of the four
independent properties already given and the angle of direction

of the fibers with respect to the direction of the applied

load, 6, {31

2v
o1 cose + (L - LTy sinZecos2e + L. sin%o (2.21)
& B Gt & By

By using either of the models described in the previous

section, the longitudinal modulus can be written as:

tanh(ge/2)
=B [1 - ———-—= J v + BV (2.22)
f (82/2) f gm m

&L
Where 8 is given by equation (2.7}).
The transverse modulus and the in-plane shear modulus can

be obtained empirically by using the Halpin-Tsai equations [3],

which are approximate representations of more complicated

5
%

-

- .-
(s

Caned
A O T

L %

ol e,
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\ micromechanics results and can be equally applied to fiber,

{
: ribbon or particulate composites: i
l—.
! 1 +&nv 3
; Mo ___hf (2.23) N
x
E Moo 1Y ¥
¥
v
1 Where .
: :
N (Me/M) - 1 y
y T T (2.24) s
I : (Mf/Mm) + £ *
: -
< ¢ is a measure of fiber reinforcement which depends on the n
. .
., fiber geometry, packing array and load conditions. For circular
! fibers in a square array, good results were obtained using §{ =
: 1
= 2 for the transverse modulus and £ = 1 for the in-plane shear .
. [/
S ¥y
- modulus (3].
! The major Poisson's ratio can be obtained by using the "
3 rule of mixtures [3]: i
5 LT T VY T Ve (2.25) N
-, 8
X At this point, the elastic~viscoelastic correspondence ;
! principle [26] can be used to transform the elastic constants
o
¥ :
q . to viscoelastic constants: e
K . A
i E; = E)‘( + 1E; .
% Ef = B + ik :
he 3
® - ] s A\
Em %‘+ ‘;n >

-‘EIII. L[]

o
7
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EE = Ei + iEE

E? + E+ + 15?

G; = G% + 1G¥

G; = q;-+iG; (2.26)
G*., =

tr = 61 * 167

\)‘tT = vll_T + i\)i:T

After introducing the complex elastic constants in Eq.
2.21, the off-axis composite storage moduli and the loss moduli
can be obtained by separating the real and imaginary parts and
neglecting higher order terms in the loss factor (since n <<
1). These equations are very long, so only the general form is
presented here. The complete mathematical manipulation is given
in Appendix A of Refcrence [53].

In general terms,

E :
X = % LEs Enaveav, »(2/d) angomp,ve vy .8 packing array]

(a) £’
m

(b) n o= ¢, [E%vEA'Vf’Vv’(gld)’“f‘"m'vf’“m’e’paCking array] (2.27)
Ell .

e) e ¢3 [E;,Eé,vf,vv,(z/d).nf,nm,vf,vm,e.packlng array]
Ell
m

[} 2% % vy

e s Te T3

S o

4=, 9 "
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The analysis up to this point is based on the assumption
that matrix and fibers are each isotropic, so the properties of
the fiber are the same in all directions and the shear modulus
can be obtained using the well known elastic relation given by
Eq. 2.28 [27].

G = U (2.28)
2(1 + \’f) '

In the present research, graphite, Kevlar and boron fibers
were used in the experimental part. These fibers are essential-
ly anisotropic [ 26,28] which means that the elastic properties
vary with direction. Whitney [29] showed that by treating the
fiber as an orthotropic, transversely isotropic material, the
micromechanics equations can be adapted easily to take care of

its anisotropy. Thus, the composite transverse modulus is

given by
1 +¥fn.,v
Er= & C —'i-f-] (2.29)
1 - npy Ve
Where: 1
(Eep/E)
) D

Gy = G ——-—— -] (2.30)

WP A S o

ML) ‘.

& P A A
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2.3 VIBRATION OF A CONTINUOUS SYSTEM

For the development of the experimental technique, small \

modes, and

were used for transverse

cantilever beam specimens

for longitudinal

free-free with masses attached at both ends

modes.

o Cantilever beam specimens of aligned discontinuous fiber 0

reinforced composites were used for the fiber/length studies, h

Under flexural vibration, no mixed coupling effects are present

and the complex moduli can be obtained from measured resonant r

frequency equation for a cantilever beam, i

frequencies and the

. : Since the laminate properties do not vary through the thick-

ness, the measured flexural modulus is equal to the extensional

modulus.

tests used for fiber direction

case of off-axis

For the

studies, the flexural vibration technique cannot be used. since

flexural-~torsional coupling effects exist. These specimens were

therefore tested in longitudinal vibration with masses attached

needed in order to adjust the

The masses weze

at both ends.

resonant frequency of the first mode to the range of interest

for this research. Again the complex modulus was obtained from
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the measured resonant frequency and the corresponding frequency

T §

: egquation for a mass-mass beam. %
t 'y
<
! 2.3.1 TRANSVERSE VIBRATION OF A CONTINUOUS BEAM é;
z
)
i
| The elastic moduli of aligned discontinuous fiber compos- :
S ites were found, as mentioned in the previous section, from 0
- cantilever beam specimens by exciting the flexural or trans- r
. m
verse modes and measuring the modal frequencies. =i
- The equation of motion for the cantilever beam of Fig. 2.3 f
¥
. ! is given by Eq. 2.31 3
. b
y 2 -
- ) 3
- 124 on Y (2.31)
s §
] The boundary conditions for a cantilever beam are: :
o { At the free end
& §
i l _a._z_‘! = 8_31 = (2.32)
< ax?  ax3 ) i
. LYy
. . Yy
v 1Y
N At the clamped end ?
! l
-— ay - \,
. y==F (2.33) R
A 9X %
P N
= hS
A . -
g Using Egs. 2.31, 2.32 and 2.33 the resonant frequencies 3
N for each mode are found to be: "
. 9
L

T AN

kY
Y, v
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Where n =1,2,3,....

The eigenvalues A, for the cantilever beam are found by

solving the transcendental Equation 2.35

cosxncoshxn +1=20

Values of the eigenvalues for all the modes are given in

(30].
2.3.2 LONGITUDINAL VIBRATION OF A CONTINUOUS BEAM

The free-free beam with masses attached at its ends (Figqg.
2.4), was used to obtain the elastic moduli under longitudinal

vibrations,

The differential equation of motion is given in Eq. 2.36

[31].

The boundary conditions are:

At x =0

ae Yy -, (224
X at
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At x = §
2
au 3“u
ae () = m, (20
% 2 ) (2.38)
The natural frequencies are given by Egq. 2.39
A
fo=.0 (B)l/2 (2.39)
2nS »p

where n = 1,2,3,....

The eigenvalues xn are obtained from the following tran-

scendental eqguation:

(M) M) RS
tanxn = (2.40)

2 - 2
M MY (RoS)

The complete mathematical development of the egquations for
the transverse and longitudinal vibrations are given in Appen-

dix B of Reference [53].

2.4 MODAL ANALYSIS

The principal objective of this research was to exper-
imentally characterize the dynamic properties of composite
materials. The use of modal analysis helps by identifying the

modes of vibration. Each mode of vibration has a specific

-

e
2T

e T T

v~
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natural frequency, damping factor and mode shape that can be
identified from any point of the structure [32] .
Modal analysis is useful for the following reasons:
a.- It allows verification and/or changes in the mathematical
model that describe the structure under testing.
b.- It helps to identify the weak points of the structure.

c.- It provides information about unwanted noise or vibration.

2.4.1 FREQUENCY RESPONSE TRANSFER FUNCTION

Modal analysis is based on the measurement of the frequen-
cy response function, or transfer function.

There are six useful forms of the transfer function. These

Compliance (displacement/force)

Dynamic or apparent stiffness (force/displacement)
Mobility (velocity/force)

Impedance (force/velocity)

Inertance (acceleration/force)

Dynamic or apparent mass (force/acceleration)

Computing techniques 1like the Fast Fourier Transform in
combination with powerful instruments 1like Digital Fourier

Analyzers provide fast and accurate determination of the

frequency spectrum of a time-domain signal. In order to facil-

itate the implementation of modal analysis on a Digital Fourier
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Analyzer, the relationships between the time, frequency and 3
# .
3 ] Laplace domain are greatly used. The mathematical tools are the ?
h .
Fourier and Laplace transforms. 2
*. o
' f In the time domain the system behavior may be determined ¥
N . ‘f,
$ . in terms of the system impulse response h(t) using the convo- :
Ry I v
lution integral [33,34]. 4
\
. :
. t
L y(t) = IO X(T)h(t - ‘l’)d‘t (2.41)
s,
. ‘ The transfer function that relates the impulse to the
: ! output is expressed in the Laplace domain by: ,
> ]
! ~
"y | Y 3 <
N H(s) = X&) (2.42) |
. X(s) _
; 1
: Where: =
‘.' ©
4 -st
v X(s) = [ e " x(t)dt -3
2 ( !, (2.43) 2
»
’ - :
o -st ,
3 ¥Y(s) = [ e ty(t)dt (2.44) N
. o
N
Y H(s) = [ e *"h(t)dt (2.45)
. v}
[\ The s-plane is complex and the magnitude of any function &
AN
E such as the transfer function H{(s) c¢an be plotted as a three ﬁ
<
L)
S
P “
- hY
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dimensional surface above the complex s-plane [32] . The trans-
fer function evaluated along the frequency axes (s=iw ) is the
Fourier Transform, or the system frequency response function.
Since these variables cannot be measured in the Laplace
domain, the Fourier transform is of great importance for compu-

tation [35] .The frequency domain transfer function is:

H(f) = .Y_(.f.)_ = .Y_(_QX_.(..Z.)_ (2.46)
X(£) [x()]
Where:
H(F) = [ h(t)e 12" tqy (2.47)
X(F) = [ x(t)e 2 Flqe
- (2.48)
Y(f) = | y(t)e'iz“ftdt (2.49)

and X(f) is the complex conjugate of X(f).

The expanded numerator and denominator of Egq. 2.46 are
called the cross spectrum between the input and output, Cky(f),
and the power spectrum of the excitation or input, %((f ),

respectively.

Y(F)X(f) = G (f) (2.50)

Y

SRNRAR |
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KER(E) = (O] = 6,(F) (2.51) 3

'.
There is an inherent bias error in measuring the cross o
i spectrum. The magnitude of the bias error is inversely propor- “

tional to the number of averages made in the computation. The

¢
. .I.
greater the noise, the greater the number of averages that s
1)
should be done in order to approximate the value of the cross .

spectrum [35].

d Sl "™ N W B _ S R I W B 5 S e — e — o —

One of the most important advantages in computing the F
cross spectrum is that magnitude and phase can be computed at

the same time, since both pieces of information are contained

P TSR BT e
I}

in it. Another advantage is that by using this formulation, any

wave form that is Fourier transformable can be used, so it is

b‘ I

l [ not limited to just sinusoidal signals.

- 2
{ . ht

" (]

< 2.4.2 COHERENCE FUNCTION
.

- Another advantage of computing the cross spectrum is that £

A it allows the computation of the coherence function between the ?

input and output signals, defined by Eg. 2.52

'xr Y%

":: £1]2 ,
: 2 f) = lny( )I

P ny( = -(_;,—_—f—-G—.(f—) (2.52)

i i x( )y

§ i The coherence function will be 1 if there is no noise in 3

L

the measurements and if the system is linear. It will be 0 when

PR ]

r

d there is no correlation bhetween the two signals. The coherence

TREL]
R

N
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.

|

A
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function is a good check of the influence of noise in the
signals. It is the monitor of the quality of the transfer func-

tion.

2.4,3 MEASUREMENT OF DAMPING

\

.Damping is a measure of the total epergy dissipated in any
vibrating structure. Its value is of great importance when
designing dynamic structures. This section is written with the
objective of reviewing the most commonly used methods of damp-
ing measurements. Most of the methods are based on the
single-degree-of-freedom analysis of a single mode. This is
appropriate, since analytical modal analysis shows that a
continuous system can be modeled as an infinite number of
single degree of freedom systems [34].

The damping properties in resonance are related to the

amplification factor Q as follows:

Q=-— (2.53)

The loss factor n is the inverse of the amplification
factor. This is the parameter that will be used for the charac-~

terization of damping in this research,

1
n =U (2.54)

| =50
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TS, wr Gl W,

A RATLTCATAR .

o

W Y Y

RSN




27

The loss factor can be measured from the frequency
response function by several methods and some of the most popu-~
lar are described below [36].
a.~- Ratio of the static compliance to the compliance magnitude

at the natural frequency.

_ static compliance
n e —— (2.55)

compliance magnitude at the natural frequency

b.- Bandwidth technigue (See Fig. 2.5).

n = ot
£ (2.56)

n

c.~ From the real component of the transfer function (see Fig.
2.6).
2 .
_ (fa/fb) 1

(2.57)

d.~ Coincident-gquadrature or Nygquist plot (See Fig. 2.7).

f, - f
net__1 (2.58)
fn
e.~- Curve fitting based on a model of a

single-degree-of-freedom or a multidegree-of-freedom
system., 1In the first case the model is given by Eq. 2.59,

where the variable for curve-fitting is the damping factor

L .
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y(t) = A(t) ™ (2.59)

([1 - (w/w)?? + [2c(w/ug)]?)
For a multidegree of freedom model, several modes are
considered at the same time and exponential equations, polyno-

mial equations or other equations can be used to fit the trans-

fer function of the system.

There are other methods to obtain damping which are not
based on the frequency transfer function.The most popular are:
a.- Free vibration decay, based on the decay of the oscillation

in the time domain (See Fig. 2.8).

The loss factor is:

ns - (2.60)

ln 2 (2.61)
n
b.- Resonant dwell, which is based on the ratio of the ampli-

tude of the input ,aj, to the amplitude of the response ,a,

, at resonance under sinusoidal excitation,

n=K-— (2.62)
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| A
} .
Where K is a factor which depends on boundary conditions b
! and mode number. ;
¥
c.- Hysteresis loop in a force-displacement curve (see Fig. *
| 2.9) [38].
. b _»2
U b (2.63)
The choice of the technigue depends on the properties of i
~h

the material to be tested, the ranges of frequency and stress

kP

| of interest, the type of excitation available

mat e,

(forced-sinusoidal, random or impulsive force), and apparatus
l available. In all cases, parasitic losses such as support fric-

tion and air drag must be minimized, since erronecus measure-

" l ments of damping can be obtained. 3
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3.0 EXPERIMENTAL TECHNIQUE

From References [6,38,39] it can be concluded that,
theoretically, discontinuous fiber reinforcement can be used to
improve internal damping in fiber reinforced polymer composite
materials, As shown in Reference 6 , there is a theoretical
optimum value for the fiber aspect ratio for which the loss
modulus is maximum, but this is only obtained with very low
fiber aspect ratios. In addition, theoretical optimum off-axis
angles are shown in [ 25].
| In this research, specimens with fiber length ranging from
! continuous to 1/16" (1.588 mm) were tested in order to verify

predicted trends at 1low fiber aspect ratios, while continuous

and 1/4" (6.35 mm) fiber length specimens were tested for

different fiber orientations. The effects of the elastic modu-
' lus ratio (E'¢/E' ) also were considered in these tests by
using different kinds of fiber reinforcement: graphite, boron
and Kevlar.

. This chapter will cover the fabrication procedure, the
! ‘ development of the experimental technique for damping measure-

5 ments, the experimental procedures for determination of fiber

and void volume fraction and the Poisson's ratio for the

¢ SHEEB ™ .F 5 W +

different . mposite materials used.
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3.1 FABRICATION OF THE SPECIMENS

The specimens used were small cantilever beams with global
dimensions of 3/4" (19.05 mm) wide by 8" (203.2 mm) to 11"
(279.4 mm) long, The thickness depended on the type of compos-
ite material under consideration, but twelve plies were used to
fabricate all the specimens. The specimens were fabricated in
the laboratories of the Mechanical Engineering Department at
the University of 3iIdaho. The procedure was similar to that
reported in reference [6], except that only 12 plies were used
and the autoclave curing process was simulated in a laminating
press.

The composite materials &re available in prepreg tape
rolls of different width. For this research, three different
composite materials were used:

a.- Fiberite Hy-E1034C graphite/epoxy pre—preg] with non-woven
continuous T300 graphite filament and Fiberite 934 resin in

a roll of 12" (304.8 mm) width,

b.- Fiberite Hy-E1734A2 aramid/epoxy pre-preg with non-woven

continuous Kevlar 49 filament and Fiberite 934 resin in a

roll of 12" (304.8 mm) width.

1
55987

Fiberite Corporation, 501 W. 3rd St., Winona, Minnesota
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c.- AVCO 5505/4 boron/epoxy pre-pred

with continuous boron 4
mil filament and 5505 resin in a roll with three separated

strips of 1" (25.4 mm) wide each.

As stated previously, References [ 6,38 ] predict that
internal damping of composite materials can be improved with
reinforcement having 1low fiber aspect ratio (ratio of fiber
length to diameter of the fiber). Since the objective of this
research is the optimization of internal damping of fiber rein-
forced composite materials, it was necessary to develop a suit-
able technique for the fabrication of plates of various fiber
length. This includes cutting the pre-preg, curing the plates
and machining the specimens to the actual size. Plates of
graphite/epoxy, Kevlar/epoxy and boron/epoxy with fiber length
ranging from continuous to 1/16" (1.588 mm) were fabricated
with excellent results.

It was decided that the number of plies used tc fabricate
the plates were to be 12 after preliminary tests done by the
author using 3M Scotchply Sp 322 T300 graphite/epoxy pre-preg
tape. The thickness of the plate with 12 plies after curing
gives the specimens enough rigidity for the tests to be done
and the frequencies for the principal modes fall inside the
range of interest for the present work (10-1000 Hz for flexural

vibration, and up to 1300 Hz for longitudinal vibration).

1AVCO, Specialty Materials Division, 2 Industrial Ave.,
L.owell, MA 01851
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3.1.1 CUTTING THE PREPREG TAPE
Two techniques were developed to cut the pre-preg tape at
) the desired fiber 1length. The first one was used on 5

graphite/epoxy and Kevlar/epoxy while the second technique was

used on boron/epoxy prepreg tape [39,40 ].

A.- Graphite/Epoxy and Kevlar/Epoxy

- e
Pt

These materials were cut in laminae having dimensions of

EAENEAE UL S AN

12" (304.8 mm) x 12" (304.8 mm) from a roll previously stored

v v VLY

at 0 °F (-18 °C) with a standard utility knife with stainless

oA

steel blades. After warming up to room temperature, the tacky

AR

1

¢
surface was pressed agdainst a urethane surface that holds the E&
ply to be cut in strips at the desired fiber 1length, while -
leaving the backing paper attached to the free surface. The

measurements for the required fiber length were marked on the

L R s ]

backing paper by using a pair of dividers. All the strips were

L sliced across the fibers beginning and ending within the edges

F

- of the pre-preg tape {(Fig. 3.1) to prevent the edge fibers from

.
v

being pulled out of the pre-preg. A contact paper was attached

to the backing paper tape so that the strips would be aligned

end-to-end. The single ply then was moved to the uncured lami-

R T o o

A nate (Fig. 3.2). The alternating plies were layed up such that

the fiber ends were staggered, with a final uncured laminate of

S

\
"
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12* (304.8 mm) x 12" (304.8 mm). The contact and backing papers
were removed from each ply either as one piece or separately.
The maximum number of specimens to be tested for each
' fiber aspect ratio was decided to be six, so, only laminated
i plates of 6" (152.4 mm) wide were required. Two laminated
plates of 6" (152.4 mm) wide, each one of different fiber
length, were placed side by side for curing purposes, since the
aluminum mold was designed for plates of dimensions 12" (304.8

mm) x 12" (304.8 mm).

B.- Boron/Epoxy

For boron/epoxy composite a different technique was used.

After allowing the pre-preg to warm up to room temperature, the

( tape was arranged into a 3" (76.2 mm) wide strip and then it
was cut in 12" (304. mm) lengths. The boron fibers were then
sandwiched between the backing paper and a transparent contact
paper previously marked at the desired fiber length on a thin
strip of white paper. The 3" (76.2 mm) x 12" (304.8 mm) ply was
then fractured at each mark using a guillotine device with a 3"
(76 .2 mm) carbide blade as shown in Fig. 3.3 The fibers were
sheared against a urethane cutting surface. Two of these plies
were placed side by side in order to increase ply width to 6"
(152.4 mm). The backing paper was removed and the ply was
pressed against the uncured laminate. The alternating plies

were layed up such that the fiber ends were staggered. Then the
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contact paper was carefully removed. Two of these uncured
laminates, each one of 12 plies and dimensions 6" (152.4 mm) X
12" (304.8 mm)were finally placed side by side in the mold for

the cure process.

3.1.2 CURE PROCESS

Two different processes [ 39,40] were followed; one for

curing the composite plates with specific variations for each
one of the materials used, and the second process to cure
neat resin plates. Specimens of pure matrix had to be tested in
order to obtain properties that were applied in the microme-

chanics model.

A,- Composite material cure process

The 12" (304.8 mm) x 12" (304.8 mm) laminated plates were
cured using an autoclave style press cure with a specially
designed vacuum mold as shown in Fig. 3.4 . Table 3.1 shows a
listing of the components used in the lay-up of the mold. Fig
3.5 shows the general set-up for the curing process.

The general procedure is as follows:

a.- Spray the mold, pressure plate, vacuum bag, rubber dam and
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spacer plate with release agent Frekote 33]. It requires at
least 15 minutes to set.

Place the rubber dam and the uncured laminated plate (which
was previously warmed up to room temperature) in the mold.
Place the porous release fabric and two layers of bleeder
cloth (cut to oversized dimensions) over the uncured lami-
nate.

Place the pressure plate in the mold.

Fold the excess bleeder cloth over the rubber dam and press
into the manifold along each edge.

Start the vacuum pump and place the vacuum bag over the top
of the mold. Press along the edge of the mount to seal
O-ring against mold.

Put the spacer plate over the pressure plate with the vacu-
um bag between them, then place the meold in the laminating
press.

Set and start the data acquisition system for temperature
recording with a thermocouple located in a small hole just
below the vacuum fitting.

Follow the cure cycle as described in Table 3.2 or 3.3,
depending on material used.

The quality of the plate obtained using the process just

described is comparable to that obtained from an autoclave. Two

]Frekote Inc, 170 W. Spanish River Blvd, Boca Raton, FL

33431
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identical 12 ply unidirectional continucus fiber laminates were
layed up using Fiberite Hy-E1034C graphite/epoxy pre-preg. One
i plate wiis cured in a laboratory autoclave at the University of
Florida and the other was cured by the autoclave style press
cure at the University of Idaho. The density, fiber and void
volume fractions were determined wusing the process described
later in this chapter from four locations in each plate . The
i two plates were nearly identical, as seen in Table 3.4.
Micrograph sections of the cured laminates also show the
good quality and low void content of the composite materials
obtained using the autoclave style press cure. Micrographs of
! graphite/epoxy composite obtained from an autoclave, and

i graphite/epoxy, Kevlar/epoxy and boron/epoxy composites

S TGS O ALY R TN W W v e - - -

produced by an autoclave style press cure may be seen in Figs.,

»

} 3.6, 3.7, 3.8 and 3.9, respectively.

E’}

B.~ Resin Cure Process

Resin castings of Fiberite 934 and AVCO 5505 having

T

dimensions 12" (304.8 mm) x 12" (304.8 mm) x 1/8" (3.18 mm)

q
|

were produced in an aluminum mold following the cure cycles

outlined in Tables 3.5 and 3.6, respectively 40 . The mold and

"7‘1"‘\' =~
W

AR P

the equipment required to produce neat resin plates are shown

in Figs. 3.10 and 3.11, respectively. These specimens were

r

needed since the micromechanics model reguired input data on

o

the dynamic properties of the matrix material [6 ].
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3.1.3 MACHINING OF THE SPECIMENS

The specimens were machined in the Machine Shop of the
Mechanical Engineering Department using a precision reciprocat-
ing grinder. The cured laminated plate was fixed with double
sided tape on 1" (25.4 mm) thick styrofoam, then placed on the
working table of the grinder. Graphite/epoxy and Kevlar/epoxy
laminated plates were cut with an abrasive cut-off wheel while
the boron/epoxy plates were cut with a diamond cut-off wheel
Fig. 3.12.

The machining of the graphite/epoxy and boron/epoxy speci-
mens did not give any maior complications, but the machining of
Kevlar/epoxy specimens was problematic since delamination
occurred at the edges of the specimens. Water was used as
lubricant to machine this material. More recently, Kevlar/epoxy
plates were machined with an electric band saw at high speed
with the saw blade mounted backward (Fig. 3.13), followed by a
trimming process in a vertical rotor with an opposed helix
router tool,.

In addition to the specimens for the vibration tests,
small specimens of 1.5" (38.1 mm) x 3/4" (19.05 mm) were
machined for determination of material density and fiber volume
fraction. In order to minimize the effect due to delamination
in Kevlar/Epoxy specimens, the length was increased to 2" (50.8

mm) . Four specimens were machined for each fiber length plate

for these type of tests.
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The total number of plates fabricated were:
a.- 13 plates (118 small beam specimens) of graphite/epoxy.,
b.- 8 plates (66 small beam specimens) of Kevlar/epoxy,
c.- 4 plates (42 small keam specimens) of boron/epoxy,
d.- 4 plates (6 small beam specimens) of neat Fiberite 934
resin, and,

e.- 2 plates (6 small beam specimens) of AVCO 5505 neat resin.

3.2 DIGESTION TEST

This test was performed with the objective to determine
the fiber volume fraction and veid volume fraction of the cured
laminated plates by digestion of the matrix resin in a liquid
medium which does not attack the fibers excessively. It is
also necessary to obtain the density of each plate.

The specimens used in these tests were of 3/4" (19.05 mm)
% 1.5" (38.1 mm) for graphite/epoxy and boron/epoxy specimens
and 3/4" (19.05 mm) x 2" (50.8 mm) for Kevlar/epoxy as speci-

fied previously.

3.2.1 DENSITY DETERMINATIOR

The American Society for Testing and Materials (ASTM)

Standard Test Method for Specific Gravity and Density of Plas~

tics by Displacement, D-792-66, was used to determine the

density of the laminated plates. Room temperature and pressure
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at the time of the tests were recorded. The weight of the spec-
imens in the air and in the water then were used in Eg. 3.1 to
determine the required density value. The procedure followed is
outlined in Table 3.7 [39].

The equipment needed includes an analytical balance, beak-
er, thermometer, and a metal clip suspended by a nylon wire
from a glass rod (Fig. 3.14). The density of the specimen is:

w (e, - °,)

B e

- W
WC W

be (3.1)

3.2.2 FIBER AND VOID VOLUME FRACTION DETERMINATION

The American Society for Testing and Materials (ASTM)
Standard Test Method for Fiber Content of Reinforced Resin
Composites, D3171-76, Procedure A, was used with
graphite/epoxy. For Kevlar/epoxy composite material specimens,
the same standard was slightly modified. The digestion was
obtained using nitric acid assay 70.6 § at 167 °F (75 °C) for 5
hours for graphite/epoxy and 1 hour for Kevlar/epoxy The
temperature was obtained with water and a circulating pump
heater as shown in Fig. 3.15 [39].

It was noted that bare Kevlar fibers digested for 1 hour
increased their weight by approximately 2.5 %. The fiber weight

in the composite was then corrected for this wvalue in the

respective calculations.
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The digestion for boron/epoxy was based on the procedure
outlined in reference [ 41]. The digestion was carried out
using sulfuric acid assay 96.3 % at 400 °F (204.4 °C) for 16

hours. This temperature was reached with a hot plate (Fig.

3.16).

The calculations for all materials were based on the

equation of the rule of mixtures for specific weight [2 ].
Yo T YV Y Yu'm (3.2)

The fiber volume fraction is:

v = Y¢ Pe
- 3.3
f be W ( )

and the void volume fraction is:

T (3.4)
v
Weps WP

The calculations were done using the HP 9836 desk comput-
er, The detailed procedure is given in Table 3.8 for
graphite/epoxy and Kevlar/epoxy composite materials and in

Table 3.9 for boron/epoxy.
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3.3 DEVELOPMENT OF THE TECHNIQUE FOR DAMPING MEASUREMENTS

The number of tests to be done and the lack of valid data
on internal damping of composite materials motivated the author
to find an accurate and fast damping measurement technique that
was easy to use and had the potential for making in-situ meas-
urements for non destructive testing [42].

Gibson and Plunkett [43] developed a forced sinusoidal
vibration technique for measuring damping and stiffness in
composite materials, which was improved later by Gibson, et al
[44) . The block diagram for this technique is shown in Fig.
3.17. This technigque has been used succesfully on numerous
composite materials [19,20]. This technique was not used in the
present research because it is too slow. Only one frequency can
be excited at a time, and tuning the resonant frequency to
obtain the Lissajous pattern on an oscilloscope is not easy.
The other techniques described here excite all the modes at the
same time, under random or impulsive excitation, and the trans-
fer function in the frequency domain is generated in real time.
The sinusoidal technigue was used for comparison of results
during the development of the new technique.

A 2024-T351 aluminum alloy specimen was used for cali-
bration tests since the Zener Thermoelastic theory is quite
accurate in predicting damping for structural metals under

flexural vibration [43,45,46]. That is, experimental damping
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values were compared with well-~accepted values from thermoelas-
tic theory.

Unreinforced epoxy resin specimens and composite material
specimens such as continuous fiber graphite/epoxy (12 plies)

and short fiber E-glass/polyester were also used during cali-

~bration tests. These materials were selected to give a range of

damping from low (aluminum) to intermediate (composite) to high

(epoxy) .

3.3.1 RANDOM TECHNIQUE

Fig. 3.18 shows the block diagram for this technique. This
diagram is similar to the one used for the forced sinusoidal
technique, except for the shaker input. The transfer tunction
in the frequency domain is obtained with the Fast Fourier
Transform (FFT) analyzer while the specimen 1is continuously
excited with an electromagnetic shaker with a random input. The
random signal (actually pseudo-random) is ¢enerated by the
noise source of the FFT analyzer. This type of signal minimizes
the leakage effects of a non periodic signal [47], which is the
energy from the non periodic part that leaks on to the periodic
part giving less accurate results,

The pseudo-random waveform provides the fastest means for
finding statistically accurate transfer functions, which then
are used to determine the internal damping of the material by

means of the half-power bandwidth method as described later. A
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typical transfer function showing several resonant peaks is

shown in Fig. 3.19. Use of the zoom feature of the FFT analyzer b

B

makes ' it possible to analyze the peaks more accurately, as

-, ]
By

shown in Fig. 3.20.

-

The specimen used is a double cantilever beam, which is .-
the same as that used for the forced sinusoidal technique 44

(Fig. 3.21). The specimen response is sensed by a non contact-

T iy

ing eddy current proximicy transducer, whose calibration curve
is shown in Fig. 3.22. The input is measured w' th a piezoelec-
' tric accelerometer, E
Excitation and response signals are fed into the FFT ¢
analyzer and the desired transfer function on the desired

frequency span is displayed on the screen in real time,

o 93
: biat

\ The principal characteristics of this excitation method

b

are {47]:
a. The force level is easily controlled (noise source knob and

power amplifier knob). X
b. The transfer function spectrum can easily be shaped at .

resonant peaks with ensemble averaging, which removes

. . .
L VR

extraneous noises, nonlinearities and distortion effects 3
(RMS averaging and Hanning window function).

c. No leakage errors are present

d. A well designed fixture and exciter system are required,
This means that this technique may not be suitable for

in-situ testing of engineering structures,
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3.3.2 IMPULSE TECHNIQUE “, .
| "
{ l'
"

' In this case, the transfer function for the specimen is' g'
' found by tapping +the specimen with a hammer which has a force $
by

transducer attached at its head. Two specimens were used in

i,

this technique. A cantilever beam specimen (same as Fig. 3.21)
was firvxed in a vise at the resin shoulder. A free-~free beam

' specimen was supported at the nodal points for the fundamental

e, |

' mode with nylon wire (Fig. 3.23).

The signals from the force transducer and from the motion

§ Vo A 8 e

transducer (non~contacting proximity probe) were fed into the

YL L LA LS Y . SN O TICL B R R S K SR T RS em—

FFT analyzer, which displayed the desired transfer function.

Y

The block diagram for this technique is shown in Fig, 3,24.

The principel characteristics of the impulse technique are

2
]

.
o,
»°,

w0

(47 ]:

a._ The force level cannot be accurately controlled.

P

b. The transfer function can be shaped with small difficulty
at resonant peaks using ensemble averaging which removes

extraneous noises and, to some degree, nonlinearities and

LR AR .

' distortion effects (RMS averaging and uniform window func-

3

tion).
c._ Leakage errors may be present. ’
d. A special fixture and exciter system are not reqguired, so

that in-situ testing of engineering structures is possible.
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For both random and impulse techniques, care must be taken
to avoid measurement of response near nodal points for the
modes to be tested. Such measurements would consist primarily
of noise, since the actual response is very small near nodal
points. In addition, the amplitude of vibration for the
response must be kept smaller than the thickness of the speci-
men in order to minimize air damping and support friction damp-
ing.

Since the frequency response function is in terms of the
cross- spectrum [35] , the coherence function, which is the
ratio of the response power caused by the applied input to the
measured response power [32], can be computed at the same time.
The value of the coherence function is equal to 1 when the
measured response is caused totally by the measured input. The
coherence value is less than 1 when the measured response is
greater than that due to the measured input, which means that
extraneous noise or nonlinearities are contributing to the
output power. Every transfer function should be accompanied by

a coherence check.
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3.3.3 DATA REDUCTION

A.~ Forced Sinusoidal Vibration Technique

The forced sinusoidal technique was used to check the
results from the new techniques. Data reduction for this test
was carried out by using the HP-85 micro-computer.

The basic equations wused to find the loss factor and the
storage modulus are based on the ratio of the base to tip
amplitudes at resonance [48] and on the frequency equation for
a cantilever beam vibrating in its nth mode [ 30,49, respec-
tively:

The flexural loss factor is found from [48,50]:

C.o . (x )a
n=-j n g b (3.5)
o (S)wpalx,)
The flexural storage modulus is;
4n 25" APF2
E' = n
- ‘“‘;.;"I"“ (3.6)
n
The flexural loss modulus is then:
E* = nt’ (3.7)
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B.- Random and Impulse Techniques

The loss factor at resonant frequency f, is obtained with

, the half-power bandwidth technique:

n=--- (3.8)

The half power points are found at 3 dB below the peak

value of the transfer function for a specific mode when a loga-

! R X N B S

T rithmic scale is wused, or at 0.707 of this peak value when a
linear scale is used. The data reduction is carried out by
I ; using a Hewlett Packard HP-85 microcomputer which is connected
to the FFT analyzer using the HP-IB interface. After the
desired number of ensemble averages, the desired transfer func-
tion 1is displayed on the screen of the FFT. The computer
program "DAMP" (Reference [53]) reads the binary values from the
memory of the FFT, makes the corresponding transformations to

the current scale, finds the points on either side of the

o AR SO R Y YL

>

half-power points, and finds the half-power points by interpo-

>
v

lation. The resonant freguency and the half-power bandwidth are
then used in Eq. 3.8 to find the loss factor, while the flexur-

al storage modulus and loss modulus are obtained using Egs. 3.6

SR

and 3.7 respectively. A different frequency egquation is

required for extensional vibration, however. The coherence

SR

value at resonance 1is recorded in each measurement.
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3.3.4 RESULTS
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The descriptions of the specimens used in developing the
technigque are given in Table 3,10. Double cantilever beam

1

specimens of aluminum, graphite/epoxy (12 plies, continuous),

chopped glass fiber reinforced polyester2 and unreinforced
epoxy3 were used for the three techniques. Free~free beam spec-
imens of aluminum (lowest 1loss factor) and glass/polyester
{high loss factor) were used to perform another variation of
the impulse technique.

The results are presented in figures for each one of the
materials used. Fig. 3.25 shows the variation of loss factor of
the aluminum cantilever specimen at four resonant frequencies
for the three techniques compared with the theoretical curve of
the Zener thermoelastic theory. This is a severe test of the
apparatus, since composite damping is much greater than that of
aluminum. In all three techniques, acceptable values for the
first three modes were obtained, and this reinforces the valid-
ity of the forced sinusoidal technique as reference., 1In the
fourth mode, the values are consistently greater than the
predicted values, which probably means that another physical

mechanism is present in addition to the thermoelastic mech-

]Sp 322 T300. Manufactured by 3M Company, 3M Center, St.

Paul,zMinnesota 55101.
PPG-SMC-R65. Manufactured by PPG Industries, Fiber Glass

Divis&on, Pittsburg, PA 15222
Epoxy for 3M Sp 322 graphite/epoxy prepreg tape, manufac-
tured by 3M Company.

) 7o

B e ]

g sp—

e § 0




BELMILVL S TVT IR U 78R 528 02 “et™ TR® el —g 8 ¢ Tru £im - roa e T e ae e -

50

R

anism. Other possible mechanisms are grain boundary viscosity,
f point defect relaxations, eddy current effects, stress-induced

ordering, and electron effects [17].

In Figs. 3.26, 3.27 and 3.28, the results for the forced
sinusoidal, random and impulse techniques for glass/polyester,
graphite/epoxy and unreinforced epoxy specimens, respectively

are shown. The values obtained for each mode are comparable

between the three techniques with acceptable data scatter.
Additional data were obtained by testing aluminum and

glass/polyester free-free beam specimens using the impulse

Se w4Ta s e .

technique (Fig. 3.29). For very low damping (aluminum), the
results are not acceptable. Experimental values, which are high

with respect to the predicted values, indicate the presence of

VO se U umam

: nonlinearities (probably from the nylon wires). For high mate-

rial damping, this technigque gives reasonable values with the
additional advantage that it can be used to analyze more than

five modes.

Y

The coherence values recorded after ensemble averages for
the random and impulse techniques had a large scatter, going

from as low as 0.4 to 1 depending on the mode analyzed and the

o AP

material of the specimen tested. The low modes generally had
lower coherence compared with higher modes. In the same way,

low damping materials had lower coherence than the high damp-

LRl R SN

ing materials., Since the damping values so obtained show good

agreement with those obtained using the technique of reference,
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the relationship between the value of the coherence function

and validity of the damging measurements is not very clear,

3.3.5 CONCLUSIONS ON CALIBRATION TESTS

The new random and impulse techniques give acceptable

a.-
experimental results based on comparison with the previous-
ly developed sinusoidal technique.

b.- Both new techniques are faster and easier to use than the

previously developed sinusoidal technique.

c.- The random technique reguires equipment that may not be
available for in-situ tests of structures, whereas the
impulse technigue can be easily used for such tests.

The amplitude of vibration must be kept below the thickness

jor
’

of the specimen in order to minimize air damping and
support damping. This is more easily accomplished by using
the impulse technique than by using either the random or
forced sinusoidal techniques.

e.- All things consider=d, the impulse technique with cantilev-
er beam specimens was selected for the following tests of

this research.

3.3.6 ADDITIONAL IMPROVEMENTS ON THE IMPULSE TECHNIQUE

a.- The hand-held hammer used to excite the specimen produced

some variability 1in successive measurements. This problem
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was solved by replacing the hand-held hammer with a sole-
noid~-type electromagnetic exciter (Fig. 3.30), which gives
a more reproducible impulse, while the nonlinearities and
extraneous noises were minimized (the coherence value was
improved) .
The amplitudes of vibration were sufficiently low with the
electromagnetic exciter that the epoxy shoulders on the
single cantilever beams or in the double cantilever beams
specimens were not necessary. The results of the exper-
imental values obtained using specimens with and without
shoulders are shown in Fig. 3.31l.

The input using the electromagnetic~-hammer is nearly
constant so that the response spectrum is nearly the same
for repeated tests. The shape of the transfer function
spectrum after ensemble averaging tends to approach that of
the single test response spectrum in the vicinity of the
resonant peaks. In addition, the 1loss factors obtained
using the bandwidth method on the response spectrum do not
vary with respect to those values obtained using the trans-
fer function (Fig. 3.32). The advantages of using the
response spectrum can be summarized as follows:

1.~ Data scatter is reduced, and,

2.- The experimental procedure is faster, since it is not

necessary to perform ensemble averages at all.
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3.3.7 GENERAL TEST PROCEDURE FOR DAMPING MEASUREMENTS

The impulse techriique as described previously was extended

' for extensional vibration tests for the off-axis fiber compos-
ite specimens.

Under transverse or flexural vibration, the beam flexes

perpendicular to its own axitc to alternately store potential

energy in the elastic bending of the beam and then release it

into the kinetic energy of transverse motion (30] . The normal

stress parallel to the beam axis is the only stress acting on
f the beam. When the specimens used are aligned fiber composite
materials, complex moduli can be determined directly from this
test. In the case of the off-axis specimens, the normal stress l_
can induce both normal and shear strain and correction for
i various coupling effects, such as flexural-torsional effects, i
would be necessary before comparing with theoretical predic- E
- tion. Thus the isolation of damping due only to flexural defor-
' ! mation appeared to be very difficult. Extensional vibrations
eliminate flexure-torsion coupling effects, but both normal and

shear strains are still present. The tensor transformations in

® r T e = - -
——

l the theoretical off-axis analysis in Section 2.2 take this into
account, however. Thus, the complex moduli obtained by this

i method can be compared directly with predicted values.
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The following two sections describe the general procedure
for each one of these techniques as they were used in this

research,

A.~ Flexural vibration tests

The block diagram of the flexural vibration apparatus is
shown in Fig. 3.33, Small beam specimens were tested under
transverse vibration. An aluminum foil target of 3/8" (9.53 mm)
diameter was placed on each specimen at a distance equivalent
to 70% of the effective length of the specimen from the clamped
end. The effective length in a cantilever beam is the length
from the clamp to the free end. The aluminum target is needed
because the eddy current probe used to sense the response works
only with metallic surfaces.

The signals from the response transducer and the force
transducer attached to the tip of the electromagnetic hammer
are fed into the FFT Analyzer as explained previously in this
chapter. The computer program “DAMP" (Reference [53]), was used for
data acquisition and reduction. The input data to run this
program are the length, width and thickness of the specimen,
the density obtained from the ASTM standard test D-792-66, the
tumperature at the time of the test, and the fiber and void
volume fraction. The next step is to set the front panel of the

FFT Analyzer for the impulse technique: sensitivity of channels
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A and B, frequency mode, frequency span, type of spectrum,
window function and scale,

After the frequencies for the first four modes were deter-
mined, the zoom feature of the FFT Analyzer was used to isoclate
each mode one by one. Three to four measurements were done for
each mode of every specimen., The computer program makes the
corresponding calculations and the hard copy of the output
shows the resonant frequency, the loss factor, and the storage
and loss modulus. The coherence function is printed only if tne
transfer function is used to calculate the loss factor. The
storage modulus is calculated by using the resonant frequency
for the mode under consideration and the frequency eguation
{Eq. 3.6) for a cantilever beam.

The set up used for this test is shown in Fig. 3.34,

B.- Extensional vibration tests

The block diagram of the extensional vibration apparatus
for longitudinal vibrations is shown in Fig. 3.35. Small beam
specimens with masses attached at each end were used with this
technique (Fig. 2.4). Changes of length of the beam and the
masses are necessary in order to maintain the frequency of the
first mode inside the range of interest for this research. This
is accomplished with the help of a computer program written in
BASIC for the Hewlett Packard HP-85 micro-computer. This

program calculates the eigenvalue for the mode of interest, and
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by varying the masses or the length of the beam, the estimated
' ‘ value for the resonant frequency is obtained. This calculation
! is repeated until the estimated value is close to the
)
X pre-defined resonant frequency to be used in the tests,

This technique was used for characterization of damping as
a function of fiber orientation. The impulse teclinique was used
b again but the beam-mass assembly was suspended from a steel

. . bracket with nylon wires attached at each concentrated mass.

The specimens were excited longitudina:ily with the electromag-

netic hammer, while the response was measured with a piezoelec-

tric accelerometer.

!' Data acquisition and reduction were the same as for the
E flexural vibration, except that Eg. 3.9 was wused to calculate
; ‘ the apparent storage modulus along the axis of the beam, and
! the values for each one of the masses were part of the input
S ! for the program "DAMP",

i : e 4n?s2pf 2

= "‘*;;‘—“' (3.9)

n

The set-up of the equipment used in this test is shown in

Fig. 3.36.
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3.4 POISSON RATIO DETERMINATICN

The Poisson's ratios for the matrix and the composite
materials are needed for the micromechanics model used for
comparison with the experimental results.

Poisson's ratios for the bare resin specimens and for the
composite materials were obtained by static loading the same
small beam specimens o¢f dimensions 8" (203.2 mm) long x 0.75"
(19.05 mm) wide and 12 plies thick for the composite materials
or 1/8" (3.175 mm) for the resin specimens.

SR~4 strain gages type FAET-IZA-12513L\ were installed on
the specimens in two quarter Wheatstone bridge circuits, A
Hounsfield tensometer was used to apply load to the specimens.
A HP 3947A data acquisition system interfaced with a HP 9836
desk-computer was used to sense the imbalance in the bridges
when the load was applied. Using a computer program, the

longitudinal and transverse strains were obtained and Poisson's
ratio was calculeted from the slope of the line formed by plot-
ting longitudinal versus transverse strains.
Equation 3.10 is the mathematical expression for Poisson's

ratio [ 27] which is the negative of the ratio of the transverse

to the longitudinal strains,

vV T - .
(3.10)

Trabricated by BLH Electronics, 42 %Tourth Av,, Waltham,
Mass 02154
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The results are plotted in Fig. 3.37 for Fiberite 934
l resin, Fig. 3.38 fors AVCO 5505 resin, Fig. 3.39 for
graphite/epoxy composite, Fig. 3.40 for Kevlar/epoxy composite

and in Fig. 3.41 for boron/epoxy composite.

S M S SR ST R T A




FUERIR UM A S s A E tew s om s e e e e i e o

59

4.0 TESTS ON NEAT RESIN SPECIMENS

The dynamic properties of neat resin are needed, as stated
before, as input data for the micromechanics model used to
predict the dynamic properties of composite materials. The
matrix is assumed to be linearly viscoelastic in shear but

' linearly elastic in dilatation, thus the bulk modulus is real,
non-dissipative and frequency-independent while the shear modu-

! lus is complex, dissipative and frequency-dependent. {49 ]. Under

P T T TG AL A R T S N R o a —— -

these assumptions, the complex modulus for the matrix as a
function of frequency was needed for the analysis of composite
specimens at different resonant freguencies.

Two types of epoxy resin are used in the pre-preg tapes
used in the fabrication of the composite specimens. Fiberite
934 resin is a component of the graphite/epoxy and kevlar/epoxy
pre-preg tapes and 5505 AVCO resin 1is in the boron/epoxy
. pre-preg tape. Resin castings were produced as described in

! section 3.1.

Six small cantilever beam specimens for each r = -.ere
*ested under flexural vibration, as explained in section 3.2.7
part A. The geometric and physical properties of the specimens
- are givern in Table 4.1, where each dimension is the average
value of all specimens of the same group and material.

With the 1{lexural test, dynamic properties of the resin

for the first four modes were cobtained. The resonant frequency
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for the fourth mode had a maximum value of 900 Hz, which was
enough for analysis of the aligned fiber composites. The reso-
nant frequencies for the first modes in the tests done with
off-axis fiber composite specimens under extensional vibration,
were larger than 900 Hz, so the dynamic properties of the
matrix in this range were also needed. Extensional vibration
tests, as described in section 3.3.7 part B, were used with
Fiberite 834 resin specimens (Table 4.2), since graphite/epoxy
and Kevlar/epoxy are the only off-axis composite specimens
tested.

Since the resin is highly hygroscopic, the tests were done
as soon as the specimens were fabricated with the least possi-
ble time between operations (curing, cutting and testing).

Thus, moisture absorption should have no effect on the results.

4.1 FIBERITE 934 RESIN CASTING

The tests were done at an average temperature of 70° F 42
°F (21 °C + 1 °C) and a humidity of 40% + 2%. Sample outputs of
the tests are included in Appendix C of Reference [53].

Figs. 4.1 and 4,2 show the variation of storage iodulus
and loss factor with frequency and the respective curve-fitting
done using the computer program "CURVE" from the standard pack
of the HP-85 micro-computer, The experimental data for the
storage modulus were fitted with a linear regression given by

Eg. 4.1:

¢ o -va -

T Ty NS00
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B . wm,

q; = 571252.737 + 55.647 x £ (psi) (4.1)

Where f is the frequency in cycles per second (Hz).

For high fregquencies, care must be taken since the small

A

beam specimens show a drop in the effective storage modulus due
to the presence of shear deformation. The analysis leading to
the frequency equation in section 2.3 neglects shear, however.
The logarithmic regression found for the loss factor is
given by Eg. 4.2.
r, = 0.004 + 0,006 x Ln (f) (4.2)

m
The loss factor as seen in Fig. 4.2 shows a large rate of

f A g

change for low frequencies followed by a small rate of change
up to the largest frequency of the test, 1400 Hz.
It is important to point out that both tests wused with

this resin: (flexural and extensional vibrations) show

B O g

consistent results due to the overlap obtained with storage

& modulus and loss factor data in Figs. 4.1 and 4.2, respective-

ﬁ ly.

- 4.2 AVCO 5705 RESIN CASTING

EERRTe _ aaE FE LY e T e | G

Only the flexural vibration was performed to find the
dynamic properties for this resin. Six specimens (Table 4.1)
were tested at an average temperature of 72° F (22 °C) and a
humidity of 41% following the same procedure as for the Fiber-

ite 934 resin castings.
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62 !
Sample output of the data for these tests is given in E
) '.
: e
N Reference [53]. Figs. 4.3 and 4.4 show the experimental data for N
¢
, storage modulus and loss factor with its respective curve-fit. 4
; .
N The curve fitting of the data with "CURVE" gives a linear '
¥ equation for the storage modulus, Eq. 4.3 and an exponential ;
‘“"
eqguation for the loss factor, Eq. 4.4.
K. E', = 570140.406 + 14.943 x £ (psi) (4.3) -
X 0.096 !
. Np= 0.019 x £ (4.4) R
i
Where f is the freguency in cycles per second (Hz) o
4
N :
1
- N
-. P
< N
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5.0 TESTS ON DISCONTINUOUS ALIGNED FIBER REINFORCED COMPOSITES

-
0

L , In this chapter, the experimental results will be 0
-; presented and compared with predictions from the micromechanics .
§ analysis [5,14] as shown in Chapter 2. Flexural vibration of
; small cantilever beam specimens (Fig. 3.33) was the technique
2 used to test the discontinuous aligned fiber reinforced compos- f
_; ites of three types: graphite/epoxy, Kevlar/epoxy and :i!
A boron/epoxy. The geometry and physical properties for the spec- g'
; imens tested are given in Table 4.1. Data reduction was R
s carried out using the computer program "DAMP", while for E
! comparison purposes and curve fitting needed toc find the best ‘
S | agreement between the experimental results and the predicted *
% } curves, the computer program "OFFTRI" was used (Reference [53]). 3
J
5.1 EXPERIMENTAL RESULTS !
A :
» Three tests were done for each mode on every specimen. Six ;
. specimens for each fiber aspect ratio (fiber length/fiber diam- )
_3 eter) for each composite material: graphite/epoxy, Kevlar/epoxy a
: and boron/epoxy were tested under a room temperature fo 70° F + E.
N 2°F (21 °C +1°C) and humidity of 40% + 2%. Sample outputs
‘ for each test are shown in Appendix C of Reference [53]. :
L; Tables 5.1, 5.2 and 5.3 give the experimental results for E
f; the first three flexural modes for graphite/epoxy, Kevlar/epoxy &

VLIS N
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and boron/epoxy, respectively. Each value in this table is the
average of 18 data values (6 specimens and 3 tests done on each
one) .

In Figs. 5.1, 5.2 and 5.3 the storage modulus for each
composite material is plotted against frequency while in Figs.
5.4, 5.5 and 5.6 the loss factors vs frequency are presented.

For comparison with experimental data, Egs. 2.16 and 2.17
are used to generate the predicted curves. As predicted [6,51]
the storage modulus is essentially independent of frequency,
while it decreases with decreasing £iber length. The 1loss
factor increases with increasing frequency and decreasing fiber
length,

The experimental data for the first resonant frequency was
manipulated in order to present dimensionless ratios of the
composite storage modulus EL to the matrix storage modulus Eh
and the composite loss modulus EE to the matrix loss modulus
EY, - Respective data scatter is also shown in Tables 5.4, 5.5
and 5.6. The matrix properties are estimated from Egs. 4.1 and

4.2 for the case of graphite/epoxy and Kevlar/epoxy and from
Egs. 4.3 and 4.4 for the case of boron/epoxy. The fregquencies
used for these calculations correspond to the average of all
first resonant frequencies of the specimens tested.

Figs. 5.7, 5.8 and 5.9 show the variation of the ratio EL

/Eg with fiber aspect ratio experimentally and theoretically.

’
:E-!
,'!
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Figs. 5.10, 5.11 and 5.12 show the variation of loss

experimentally and theore-~

fiber aspect ratio

factor with

tically.
Figs. 5.13, 5.14 and 5.15 show the variation of the esti-

S M e

mated values of E[ /E% obtained experimentally with respect "

to fiber aspect ratio in comparison with the predicted theore- .
1. .

tical curves.

The predicted curves were plotted using, as stated before,

computer program “"OFFTRI" with the following input:

Type of resin:

Fiberite 934 resin for graphite/epoxy and Kevlar/epoxy

-
o~

AVCO 5505 resin for boron/epoxy

t

b.~ Frequency of the first resonant frequency:

S T Y

i w g W

*.

54 Hz for graphite/epoxy

38.75 Hz for Kevlar/epoxy

51.62 Hz for boron/epoxy

Type of fiber packing array considered:

Square array for all cases. As shown in [6], there is Ny

iy

almost no difference in the predicted results using square

L eTe s

or hexagonal packing array.

Storage modulus for the fiber (values given by the manufac-

turers) :

33 x 10 psi (227.37 GPa)

For T300 graphite filament:

For Kevlar filament: 18 x 10 psi (124.02 GPa)

For boron filament: 58 x 10 psi (399.62 GPa)

L Rl TR A A .
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e.- Bulk modulus for matrix. These values are real and freguen-

cy independent [ 49,52 ].

£
_ m
Ky = ———- (5.1)

3(1 - &h)

bulk modulus for matrix

)
=g
o
ad
o
o

1]

Static elastic modulus for matrix

2]
=
it

v_ = Peoisson ratio for matrix

First Eg. 5.1 was used to find the real and frequency

LSS

independent bulk modulus for the matrix using the elastic modu-
lus and Poisson's ratio at zexo frequency (static properties).

Egs. 4.1 oxr 4.3 (Fiberite 934 or AVCO 5505 resins), were used

VATV R s

for a frequency of 0 Hz. The Poisson's ratio is obtained using

the rule of mixtures with the experimental values from chapter

JE o

-+

3. Secondly, the frequency-dependent properties as V,; and Gy

' were found using again E' from Eg. 4.1 or Eg. 4.3 at the reso-

nant frequency of interest and Eg. 5.1, for the case of the

R A

Poisson's ratio. G was found from Eq. 5.2.

. o

3K _E
- o (5.2)

The complete mathematical manipulation is given in Appen-

dix A of Reference [53].

VN PARANRRASS

The values were:

—w—
Pl

BT T

For graphite/epoxy composite:

Eh] = 5.713 % 165 psi (3.936 GPa) (dynamic value)

2
L)
o
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= 0.16 (static value)
0.345 (static value}
= 6.143 X 105 psi (4.233 GPa) (static value)
For Kevlar/epoxy composite:
Eh = 5,713 x 105 psi (3.936 GPa) (dynamic value)

Vf 0.376 (static value)

um 0.345 (static value)

k= 6.143 x 10° psi (4.233 GPa) (static value)

For boron/epoxy composite:

E! = 5.701 x 10% psi (3.928 GPa) (dynamic value)

0.21 (static value)
0.318 {static value)
5.221 x 105 psi (3.597 GPa) (static value)
riber and void volume fraction ( v¢, vy)
graphite/epoxy: 0.654, 0.0036
Kevlar/epoxy: 0.661, 0.0302
boron/epoxy: 0.607, 0.003
The fiber and void volume fractions shown above are the
average values of the experimental results obtained by
digestion tests of the cured laminate plates fabricated for
each composite material (Chapter 3).
g.- Fiber loss factor equal to zero for all three composites
since no information about this factor is available (this
will be used as a curve-fitting parameter as shown later,

however) .




As can be seen in Figs. 5.7 through 5.15, the experimental

i LT

values do not fit the predicted curves. While the experimental

values for E!' /E% are smaller and shifted to the right, the

experimental values for the loss factor are greater and again

shifted to the right.

. The next step in the analysis is to find the necessary

parameters to best fit the predicted c¢urves to the experimental

values.

5.2 CURVE-FITTING

the greatest uncertainties asso-

The parameters which had

ciated with them were used as curve-fitting parameters. For g

evample, due to uncertainties in the values for the elastic

modulus of the fiber given by the manufacturers, this parameter

was used as a curve-fitting parameter. The values given by the

| o el et il Sl pee

marufacturers are based on bare fibers and apparently there is o

a reduction in the fiber properties in the pre-preg material.

This parameter shifts the curves in Figs. 5.7 to 5.9 up and 1Z~

down,

S The fibers do contribute damping, but, since no informa- -

tion on fiber loss factors is available, this is another param-

eter used for curve-fitting. The fiber loss factor was assumed

the

to be independent of frequency, however. Variation of

?
v fiber loss factor shifts the curves in Figs. 5.10 to 5.12 up

and down.
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The Force-balance model is based on a single fiber 6 .
However, the influence of contiguous fibers in fiber bundles is
not known, so an "effective fiber aspect ratio", (1/Q) g¢¢ s is

introduced as given in Eg. 5.3.

(2/d)gpg, = (2/d)2 (5. 3)

Where Z is a curve fitting parameter that shifts the curves

from Figs. 5.7 through 5.12 to the left or to the right.

Varying these parameters one at a time and using the

computer program “OFFTRI" a good fit was obtained with the
following values:
For graphite/epoxy composite:

EY = 25.51 x 10° psi (175.76 Gpa)

Manufacturer's value: 33 x 106 psi (227.36 GPa)

0.0015

Ng

Z 0.03

For Kevlar/epoxy composite:
Y = 14.48 x 106 psi (99.767 GPa)

f
Manufacturer's value: 18 x 1&5 psi (124.02 GPa)

0.011

nf
Z =0.03
For boron/epoxy composite:
Ef = 55.43 x 106 psi (381.913 GPa)

Manufacturer's value: 58 x 106 psi (399.62 GPa)
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3

: ng = 0.0019

. 2 = 0.4

Rl gl AR

Where the values for E{f were obtained by using the rule

ek SN

of mixtures with the experimental results of composite and
matrix storage modulus for a continuous fiber [6].
The curves generated by using these values are shown in
s Figs. 5.16 through 5.27. 'y
. Figs. 5.25, 5.26 and 5.27 are the theoretical tridimen- ]
i sional plots for Ei /Eé » loss factor and E" /By as function o
- of fiber aspect ratio and frequency for graphite/epoxy. These s .
oo curves are presented for an overall view of the results .
obtained with these tests.
The predicted loss factor had an optimum value for a very
low fiber aspect ratio based on a single fiber (See Figs. 5.19,

5,20 and 5.21), which is not attainable in practice by using

3 discontinuous fibers. Microfibers and whiskers may be in this

2 range, presenting interesting perspectives on optimization of

1 AR A

damping. The predicted loss factor increases asymptotically

: with increasing frequency.

The predicted stiffness is practically frequency independ-

ALY I

ent but decreases with decreasing fiber aspect ratio.

% The estimated loss modulus (product of storage modulus and E@
.: loss factor) has a maximum value at an optimum fiber aspect E
07 ratio. g
; These results should have interesting implications, espe- ;
% cially in structures subjected to high fregquency vaibrations, ;
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The combination of low fiber aspect ratio and high frequencies

produces large increases in the damping properties and a
comparatively small reduction in stiffness,

Even though good agreement was obtained between the exper-
imental data and the predicted curves after curve fitting, some
of the limitations of the model should be mentioned. The model
does not consider fiber interaction, since it is based on a
single fiber. In addition, it does not consider interface
effects that can have substantial influence on the shear

strains.
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6.0 TESTS ON OFF-AXIS FIBER REINFORCED COMPOSITES ?
P

K
N These tests were done in order to prove whether, as Y
] predicted [25], there is maximum damping for an optimum fiber

direction,

e Flexural vibration was not used to characterize damping in

VL YT 7y e e

off axis fiber specimens since mixed modes would have been
present due to coupling of torsicnal and shear deformation and

extensional deformation due to flexure. Shear deformation has a

PN Yy v

S substantial effect on the natural frequency of the beam, and,

of course on the damping [30]. In addition, the isolation of

damping due only to the flexural deformation appeared to be
R very difficult, The solution chosen was to excite the longi- g
tudinal modes with an impulsive force at one end of a free-free

2 beam with masses attached at each end, as described in section :,

3.3.7, part B.

In Ref. [25] it is predicted that for fiber aspect ratios

greater than 100, the damping of the off-axis composite becomes

(N vy
. ARSI

independent of the fiber aspect ratio, except for angles below

15 . The lowest fiber aspect ratio, (based on & single fiber)

: practically attainable from a pre-preg tape of aligned fibers f_
_L was 226.45 for graphite/epoxy and 132.98 for Kevlar/epoxy. In :
order to check the prediction above, it was decided to test _.

specimens of 0°, 2.5, 7.5°, 12.5°, 20°, 45°, 60°, 75 and 90° y

pre2vw A

for two different fiber lengths {continuous and 1/4" (6.35 mm)) 3
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using graphite/epoxy composite. Continuous fiber Kevlar/epoxy

composite was also tested, since this material had the best
damping characteristics (Chapter 5). The geometry and physical

properties for the specimens tested are shown in Table 4.2.

The computer program "DAMP" was used for data reduction
while the program "OFFTRI" was used to dgenerate the predicted

curves.,

6.1 EXPERIMENTAL RESULTS

TR YT T T T T R o AR R . = o o s —
|
P

G

Three tests were done on every specimen under room temper-
ature of 66°F *+2 °F (18°C + 1 °C) and humidity of 46%+ 2%.
Sample outputs for each test are shown in Reference [53].

Tables 6.1, 6.2 and 6.3 show the experimental results as
functions of the direction of the fibers and the first resonant
- frequency. The storage modulus was obtained using Eqs. 2.39 and
2.40, the 1loss factor as explained in chapter 3, using the
halfpower points and the bandwidth technique, and the 1loss
modulus by simple multiplication of the storage modulus and the

loss factor.

For comparison with the predicted curves, the dimension-

less ratio of E' /E', + the loss factor and the dimensionless

ratio of E' /E; are plotted against direction of the fibers in

.

<

-

. _1
o

. o

graphite/epoxy and continuous fiber Kevlar/epoxy specimens.

Figs. 6.1 through 6.9 for continuous and discontinuous fiber
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The predicted curves are plotted using the real and imagi-
nary parts of Eg. 2.21 (Reference [53]) and the computer program
"OFFTRI" with the following input:

a.- Type of resin: Fiberite 934 resin
b.- Frequency of the tests:
Graphite/epoxy: continuous fiber 1152.5 Hz
Discontinuous fiber 1206.15 Hz
levlar/epoxy: 895.1 Hz
c.~ Type of fiber packing array: Square array in all cases
d.- Storage modulus for the fiber:

For T300 graphite filament: 33 x 106 psi ( 227.37 GPA)

For Kevlar filament: 18 x 106 psi ( 124.02 GPa)
€.- Bulk modulus for matrix:

Graphite/epoxy composite: K, = 6.143 x 105 psi (4.233 GPa)

Kevlar/epoxy composite: K, = 6.143 X 105 psi (4.233 GPa)
f.- Fiber and Void volume fraction (vg¢ , Y )

Graphite/epoxy composite: continuous fiber 0.675, 0.002

Discontinuous fiber 0.678, 0.0067

Kevlar/epoxy composite 0.715, 0.0138
g.- Fiber loss factor equal to zero in all cases
h.- Halpin-Tsai parameters:

2 for the transverse modulus

1 for the shear modulus (3]

i.- Fiber aspect ratio:

Graphite/epoxy continuous fiber: 10,870 corresponding to 3"

et

o

(76.2 mm) fiber length.
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Graphite/epoxy discontinuous fiber: 905.8 corresponding to
1/4" (6.35 mm) fiber length.
Kevlar/epoxy continuous fiber: 3191.5 corresponding to 1.5"

! (38.1 mm) fiber length.

j.- Parametex that changes the fiber aspect ratio: 2=1

LAt SLgR LRIy VI T T R

-

As seen in Figs. 6.1 through 6.9, the experimental values
i do not fit the predicted curves. For Eg /E; the experimental
N values are smaller and shifted toc the left. The loss factors

;“ : are smaller from 90 °down to 5° where they cross over the

s i predicted curves. The necessity of using parameters that can be
ﬁ ! varied until the predicted curves fit with the experimental
E values is evident.

b

6.2 CURVE-FITTING

The first parameters introduced were those that best fit
the predicted curves in the previous case of aligned discontin-

uous fiber (fiber angle g= 0°) as given in Chapter 5. These

values are:

"

a.- Fiber storage modulus:

For graphite/epoxy: 25.51 x100 psi (175.76 GFa)

. e m
hlalals s

For Kevlar/epoxy: 14.48 x 106 psi (99.767 GPa)

LN ]
L

b.- Fiber loss factor:

AARAN

For T300 Graphite filaments: 0.0015

-

For Kevlar filaments: 0,011

\J
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VL rmmo s e

LI SRR T N i S N PR A e T e~ -
T Tt T N T T TR D S
T Y



s 4

N T T U, e

P A EEENGEE e w  mm—— w————— ——

76

c.- Parameter for the effective fiber aspect ratio, 2 equal to

0.03 for both composite materials,

These parameters corrected the curves for the 0 fiber
direction. The remainder of this section deals with
curve-fitting for other fiber angles up to 90° .

Up to this point the fibers have been considered to be
isotropic. The next step was to consider the anisotropy of the
fibers by introducing the transverse and shear moduli for the
fiber as parameters for curve-fitting {29], as shown in Egs.
2.29 and 2.30. That is, the fiber is assumed to be orthotropic
and transversely isotropic. In the same way, the Halpin-Tsai
parameters may be varied independently until a good fit can be
obtained.

The final values obtained were:

a.- Transverse modulus for the fiber:

T300 graphite filament: 2 x 10% psi (13.78 Gpa)

Kevlar filament: 1 x 108 psi (6.89 GPa)
b.~ Shear modulus for the fiber:

T300 graphite filament: 4 x 10% psi (27.56 Gpa)

Kevlar filament: 2 x 10° psi (13.78 GPa)

c.- Halpin-Tsai parameters:
Graphite/epoxy: 2 for transverse modulus and
4 for shear modulus
Kevlar/Epoxy: 2 for transverse modulus and

1 for shear modulus.
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it has to be mentioned that when fiber anisotropy was
introduced, the transverse loss modulus of the fiber was
obtained by the product of the transverse storage moduli of the
fiber and the extensional fiber loss factor. More research has
to be done in this area since the transverse loss factor for
the fiber should be different from the extensional loss factor.

Figs. 6.10 through 6.18 show the experimental values with
the best predicted curves. It is interesting to note that the
stiffness is maximum at 0 ° and continuously goes down, rapidly
up to about 30 ° and then slowly up to 90°. The 1loss factor
increases up to a maximum for an optimum fiber direction of
approximately 30° then decreases slowly with increasing fiber
direction, The loss modulus has a maximum between 10° to 15 .
These results verify the predictions from [25] in the cases of
graphite/epoxy composite, continuous and discontinuous fiber.
For Kevlar/epoxy specimens, the same trend for the curves were
obtained, but che results showed a higher damping and lower
stiffness than expected. These results may be related to the
poor machinability of the specimens that produced delamination
along the edges, and, «n unexpected variation on the cure cycle
for the laminate used for the specimens of 75° and 90° fiber
direction.

These results showed that the influence of off-axis fiber

orientation on damping were greater than that of the fiber

length.
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These results can be better visualized with the tridimen-
sional plots of E} /E} , loss factor and E} /E} as functions
of fiber direction and fiber aspect ratio for graphite/epoxy,

continuous fiber that are shown in Figs. 6.19, 6.20 and 6.2,

respectively.

PO

LA

CRA |

-
T

T % %y

. 4 58

- Ly %, Ay Y R

1> AT

AN R RN

Y rr Y.




B E GANELARE A LAL SR R AR PG AR T A T E T P

- ew emm— - = - - -

- TE——— . w

LR S L TR B N S T B

79

7.0 CONCLUSIONS

This chapter summarizes the principal conclusions obtained

during this research, They are separated into three sections:

conclusions on the fabrication of the specimens, conclusions on

the experimental techniques, and finally, conclusions on the

analytical model and the results.

7.1 CONCLUSIONS ON FABRICATION OF THE SPECIMENS

1._

The technique used for cutting the pre-preg tape worked
well. For graphite/epoxy and Kevlar/epoxy, fiber lengths as
low as 1/16" (1.588 mm) were obtained using a utility knife
with stainless steel blades. Boron/epoxy pre-preg tape was
fractured with a guillotine device with carbide blade.

The autoclave style-press cure yielded gquality plates
comparable to those obtained from an autoclave. The
density, fiber and void volume fraction, and even 1loss
factor and storage modulus were almost the same for both
plates.

Machining of g¢raphite/epoxy and boron/epoxy were done
without difficulties, wusing abrasive and diamond cut-off
wheels, respectively. Machining of Kevlar/epoxy specimens
had complications since delamination was present at the

specimen edges. The u:: of an electric band saw at high
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speed with the saw blade mounted backward gave the best
results with this material.

4.- The digestion test was the step with more complications.
First of all, there was not enough literature on the
subject, so a great amount of time was expenced 1in
experimentation. For graphite/epoxy, the ASTM Standard D
3171-76, Procedure A was followed without problems. The
same procedure with modifications was used for
Kevlar/epoxy. It was noted that Kevlar filaments reacted

with the acid and increased their weight, so, the fiber

weight in the composite had to be corrected. More

complications were experienced with the boron/epoxy

composite, since its digestion took over 16 hours for

conmpletion,
7.2 CONCLUSIONS ON THE EXPERIMENTAL TECHNIQUE

a.- The impulse technigue using the electromagnetic hammer gave
reliable loss factor measurements. The reason is because of
the nearly constant input that minimizes nonlinearities and
extraneous noises. The data scatter was reduced.

2.- The impulse technique is faster than the previously used
technigues because of the wuse of the response spectrum.
This eliminates the need for a large number of ensemble

averages, as was the case when the transf{er function was

used for loss factor determination.
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3.- Air damping, suppeort damping and friction losses from the
apparatus were minimized since the impulse from the
electromagnetic hammer kept the maximum amplitude below the
thickness of the specimen. This conclusion was also
verified by the good results obtained for calibration tests
done with aluminum specimens. This was a severe test for
the apparatus, since damping of composite materials is much
larger than that for aluminum.

4.~ The results obtained from the flexural and extensional

vibration tests showed good agreement since overlap was

obtained.

7.3 CONCLUSIONS ON THE ANALYTICAL MODEL AND EXPERIMENTAL

RESULTS

l1.,- The analytical model 1is based on a single fiber. The
experimental results showed that there may be an influence
of fiber bundle effects, since an "effective fiber length"
had to be 1introduced as curve-fitting parameter. Fiber
interaction may also contribute to this disagreenent
between experiment and theory.

2.- In the original analytical model, the fiber and matrix were
assumed to be iscotropic. The experimental results for
off-axis composites showed that the fibers are anisotropic.

The transverse modulus and shear modulus for the fiber had

to be used as curve-fitting parameters.,
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3.- Experimental results showed that fibers do contribute to
damping. The fiber loss factor had to be treated as a
curve-fitting parameter, since data on 1loss factors of
fibers are not available,

4.~ The analytical model does not consider interface effects,
which may be partly responsible for the "fiber damping”.

5.- As predicted in [6], discontinuous fiber composite
materials give optimum damping for very low fiber aspect
ratios (based on a single fiber) not attainable in this
research, These aspect ratios are in the range of whiskers
and microfibers, however,

6.~ The results showed, as predicted in [25], that even better
damping can be obtained with off-axis fiber orientation, at
the expense of reduced stiffness.

7.- The results showed that the Kevlar/epoxy composite has the
best damping properties, while the boron/epoxy composite

has the best stiffness properties,

Much work has to be done, and there are still questions
that have to be answered, For example, the analytical model
should account for fiber interaction and interface effects, In
any case, the results obtained from this research verify the
excellent properties and unlimited versatility of tiber

reinforced composite materials.
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TABLE 3.1
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List of layup materials used in the vacuum mold

Material

Trade Name

Bleeder cloth (polyester breather)

Release fabric (porous teflon-coated
fiberglass, 0.003" thick)

Vacuum bag (nylon, 0.002" thick)

Rubber Dam

Releasing agent

Prepreqg graphite/epoxy

Prepreg Kevlar/epoxy

Prepreg boron/epoxy

Air Weave N-4

Release Ease 234 TFP

Wrightlon 7400.002
Air pad

Frekote 332

Fiberite Hy-E1034C°
Fiberite  Hy-E1734A2°

avco 5505t

lAirtech International, 2452 E. Del Amo Blvd., P.O. Box 6207.

Carson, CA 90749

¢ Frekote Inc., 170 W. Spanish River Blvd., Boca Raton, FL 33431
Fiberite Corporation, 501 W. 3rd St., Winona, MN 55987

AVCO Specialty Materials Division,
MA 01651

2 Industrial Ave., Lowell,
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TABLE 3.2

'-:‘"."Lfl'&,-_l}"' § CR IR

Cure cycle for Fiberite Hy-E1034C (graphite/epoxy) and

s Ol

Hy-E1734A2 (Kevlar/epoxy) prepregs. Resin system: Fiberite 934.

-

1.~ Apply vacuum to mold-bag assembly

2.~ Heat to 245 °F with a rate of 3 =5°F/minute

g AR,

' 3.~ Hold 15 minutes at 245 °F.

bR

4.- Apply 100 psi pressure.

e V pmruw w v » -, -

S.- Hold 45 minutes,

S A

-«
R iy T

6.— Heat to 350 °F at a rate of 3 -5°F/minute.

7.- Hold at 3%0 °F for 2 hours.,

8.- Cool to 150 °F under vacuum and pressure for graphite/epoxy

(release vacuum and pressure before cooling for

Kevlar/epoxy).
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TABLE 3.3

Cure cycle for AVCO 5505 boron/epoxy prepreg

U TIPS S R e g WL Y . . o —— ...

Apply vacuum to mold-bag assembly.

™. T,
e
.
1

B
W
!

2.- Heat to 245 °F at a rate of 4 -6°F/minute.

Hold 30 minutes at 245 °F.

v
-3
.

|

Apply 50 psi pressure.

)

S.- Heat to 350 °F at a rate of 4 -6°F/minute.
6.~ Hold at 350 °F for 2 hours.
7.- Cool to room temperature under vacuum and pressure.

8.- Oven post-cure at 375 °F for 4 hours.
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TABLE 3.4

Comparison of volume fractions and density between auto-

clave and autoclave style press cure for graphite/epoxy

composites.

Autoclave style press cure Autoclave Cure

. Density Ve v, Density Ve v,

!
(g/cc) (%) (%) {(g/cc) (%) (%)

NI
1 1.588 65.9 0.12 1.588 67.0 0.28
i 2 1.587 66.3 0.15 1.565 62.0 0.38

. Y

S 3 1.573 65.1 0.84 1.593 67.1 0.03
b 4 1.590  66.7 0.03 1.589 68.3 0.64
AVG. 1.585 66.0 0.28 1.584 66.1 0.33

Note.- Graphite/epoxy fabricated from Fiberite Hy-E1034C

- prepreg.
;' Ve = fiber volume fraction
; v, = void volume fraction
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TABLE 3.5 o
? y
’ '
»
Cure cycle for Fiberite 934 Resin 350 °F (177 °C) Cure :
1 s
3 L
' ,5
? l1.- Let resin warm overnight to room temperature. s
o ':
; | 2.- Heat in oven at 80 °C for 1 hour, then pour into vacuum :
! flask.
1Y
F 3.- Apply vacuum while maintaining 80 °C temperature until Ea
- resin has outgassed. E'
LS
ﬁ 4.- Preheat mold to 125 °C, then pour resin into mold. =
‘hd
: 5.- Cure at 100 °C for 16 hours, then at 177 °C for 2 hours.
. 6.~ Removed cured resin plate from mold and allow to cool to
Y room temperature. B
.. . ‘v .
it "
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TABLE 3.6

Cure cycle for AVCO 5505 Resin 350 °F (177 °C) Cure

1.- Let resin warm overnight to room temperature.

2.~ Heat in oven at 125 °C for 30 minutes, then pour into vacu-
um flask.

3.- Apply vacuum while maintaining 95 °C temperature until
resin has outgassed.

4.~ Preheat mold to 150 °C, then pour resin into mold.

5.~ Cure at 100 °C for 16 hours, then at 177 °C for 2 hours.

6.~ Removed cured resin plate from mold and allow to cool to

room temperature.
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TABLE 3.7

Density determination procedure

American Society for Testing and Materials (ASTM) Standard Test
Methods for Specific Gravity and Density of Plastics by
Displacement, D-792-66,

Procedure:

Zero analytical balance,
Weigh specimen in air to nearest mg.

Fill 600 ml beaker with distilled water such that clip will
be totally submerged.

Weigh glass rod/clip assembly with clip submerged in water
(do not allow it to touch side).

Prewet composite specimen then place it in clip. Slowly
lower specimen in water as to avoid air bubbles. Use wire
to remove air bubbles.

Weigh glass rod/clip/composite assembly.
Record room temperature and pressure,
Use tables to determinepw and Par

Make the corresponding calculations.,
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TABLE 3.8

Fiber and void volume fraction determination for graphite/epoxy

and Kevlar/epoxy composite specimen.

American Society for Testing and Materjials (ASTM) Standard Test
Methods for Fiber Content of Reinforced Resin Composites, D
3171-76.

Procedure A:

9.-

Determine density by ASTM Stanaard D 792-66.
Zero analytical balance.
Weigh specimen and crucible to nearest mg.

Place composite specimen in beaker containing 40 ml of 70%
nitric acidg.

After 5 hours digestion at 75°C (167 °F) filter complete
contents into crucible,

To obtain proper vacuum, let drain tube fill with water by
pinching the end.

Rinse beaker into crucible with 20 ml nitric acid and
filter a second time.

Rinse 3 times with distilled water and twice with acetone.
Rinse beaker each time.

Place crucible on screen in core oven for 1 hour at 100 °oC
(212 °F).

10.- Cool crucible in desiccator, then weigh,

11.- Make the corresponding calculations.
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TABLE 3.9

Fiber and void volume fraction determination for boron/epoxy
composite specimen,

Procedure:
-1,~ Determine density by ASTM Standard D 792-66.
2.~ Zero analytical balance.

i 3.~ Weigh specimen and crucible to nearest mg.

AN APPSR

?: : 4.~ Heat 40 ml of concentrated sulfuric acid up to 204 C (400
VI F) using a hot plate.

]

ﬁ . 5.~ Place the specimen in beaker an digest it for 16 hours.

6.~ Remove beaker and heat an additional 40 ml of sulfuric acid
for rinsing.

b

|

! ! 7.- Partially fill the vacuum flask with cold water. Pour the
contents of the beaker into the c¢rucible and filter the

{ exXxcess acid,

-

8.- Rinse beaker with the hot sulfuric acid and pour into the
crucible for a second rinse.

9.~ Let the crucible to cool off for 10 minutes and drain the
contents orf the vacuum flask., Rinse 3 times with hot
distilled water and twice with acetone. Rinse beaker each

time,

: 10.~ Place crucible on screen in core oven for 1 hour at 100° C
' (212 °F).

11.- Cool crucible in dessicator, then weigh,

. »
PN R N

12.- Make the corresponding calculations.
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. TABLE 3,10 .
' 9
i ' Description of specimens used for calibration tests. k
LY (]
' \]
N Length Thickness Dengity A
N Specimen in mm in mm lb/in’ g/cc ;
iy
i ATuminum !
; (cantilever beam) 10,00 254.00 0.125 3.175 0.098 2.71¢
; Aluminum o
N (Free-free beam) 20.00 508.00 0.125 3.175 0,098 2.718 >
q - {
l 3M spP-322 .
. Graphite/epoxy 8.00 203.20 0.0655 1.664 0,0536 1.487 '
: {Cantilever) B
7 ~
2! PEG-SMC R6S N
v E-glass/polyester 7.75 196.85 0.135 3.429 0.067 1,858
l . (Caritilever beam) >4
- .
3 PPG-SMC R65 N
ot E-glass/polyestar 16.00 406.4 0.135 3.429 0.067 1.858 X
S (Free-free beam) g
i . Unreinforced
o epoxy | 8.25 209.55 0.125 3.175 0.0456 1,265

(Cantilever beam)

Note.~- The aluminum foil targets for the composite materials and
unreinforced epoxy cantilever beam specimens are located
at 7.37% in (187.3 mm),
Width for all specimens: 0.75 in (19.05 mm)
T Resin for 3M SP-322 graphite/epoxy.
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TABLE 4.1 =
0
’ Description of discontinuous aligned specimens tested with flexural : .
' vibration Ny
.
No Fiber Length Width Thickness Density \'41 :‘
(in)  (mm) (in)  (mm) (in)  (mm) (1b/ifd) (g/cc) (%) :
e~
p
i h
FIBERITE 934 RESIN CASTING ‘V
Iy
6 N/A 0.744 18.898 0.123 3.134 0.0469 1.298 N/A .
AVCO 5505 RESIN CASTING S‘
6 N/A 0.753 19.126 0.119 3.023 0.0445 1.232 N/A &-.
GRAPHITE / EPOXY =
. 6 7.5 190.5 0.746 18.948 0.062 1.575 0.0571 1.584 66 ;
! 6 1/2 2.7 0.76 19.304 0.0588 1.494 0.0571 1.584 66.5 :{
6 1/4 6.35 0.733 18.618 0.06 1.523 0.0572 1.586 66.6 .
6 1/8 3.175 0.749 19.025 0.061 1.554 0.0568 1.574 64.7 r4
6 1/16 1.588 0.753 19.126 0.0625 1.588 0.0567 1.574 63.2 =
\]
| KEVLAR / EPOXY _(
{ 0 .
‘ 5 7.5 190.5 0.755 19.177 0.0528 1.341 0.0492 1.362 65.8 e
S 1/2 12.7 G.755 19.177 0.0542 1.377 0.0487 1.348 68.1 K
i 6 1/4 6.35 0.74 18.796 0.0521 1.323 0.0477 1.323 66.7
6 1/8 3.175 0.749 19.025 0.053 1.346 0.049 1.357 67.1
. 6 1/16 1.588 0.746 18.948 0.0553 1.405 0.0498 1.382 63
: BORON / EPOXY
6 7.5 190.5 0.745 18.923 0.0459 1.167 0.0743 2.061 63.4
6 2 50.8 0.74€ 18.923 0.0481 1.221 0.0732 2.031 62.9
6 1 25.4 0.749 19.012 0.0551 1.399 0.0724 2.009 60.4
. 6 1/2 12.7 0.745 18.991 0.0532 1.351 0.073 2.024 60.2
» 6 1/4 6.35 0.751 19.075 0.0487 1.237 0.0751 2.084 62
H 6 1/8 3.175 0.75 19.05 0.0504 1.279 0.0734 2.037 60.3
l 6 1/16 1.588 0.751 19.075 0.0541 1.373 0.0704 1.954 56
: Note.- The length for all the specimens is 7.5 in (190.5 mm)
» Vf = Fiber volume fraction
Y
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TABLE 4.2
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Description of off-axis fiber specimens tested with extensional vibration

e meAs

-l )=

‘ No Fiber Length Width Thickness Mass 1 Mass 2
j angle (in) (mm) (in) (mm) (in) (mm) (1b) (kg) (1b) (kg) k
1 -
: FIBERITE 934 RESIN CASTING
. 1 N/A 8.344 211.938 0.745 18.923 0.124 3.150 0.627 0.285 0.6316 0,287 ;1
. 1 N/A 5.563 141.3 0.746 18.948 0.126 3.2 0.627 0.285 0.6316 0.287
1 N/A 1.875 47.625 0.746 18.948 0.126 3.2 0.627 0.285 0.6316 0.287 ;
1 N/A 0.875 22.225 0.746 18.948 0.126 3.2 0.627 0.285 0.6316 0.287 3
r
.. Note.- The density for resin casting is 0.0469 1b/in® (1.298 g/cc) ]
g GRAPHITE / EPOXY CONTINUOUS FIBER t.
.- :
- 6 0  8.375 212.725 0.746 18.948 0.062 1.575 1.2615 0.573 1.2686 0.577 3
: 5 2.5 8.556 217.322 0.741 18.821 0.060 1.524 1.2615 0.573 1.2686 0.577 Y
k. 5 7.5 8.25 209.550 0.729 18.517 0.062 1.575 1.2615 0.573 1.2686 0.577
v 6 12.5 7.896 200.558 0.73 18.542 0.060 1,524 0.946 0.43 0.9514 0.432 -
3 t 5 20 7.422 188.519 0.728 18.491 0.060 1.524 0.627 0.285 0.6316 0.287 N
x-. 6 45 5.037 127.94 0.731 18.567 0.060 1.524 0.305 0.139 0.3076 0.14 -
» 6 60 4.060 103.124 0.729 18.517 0.060 1.524 0.305 0.139 0.3076 0.14 'Y
B 6 75 3.058 77.673 0.729 18.517 0.061 1.54%9 0.305 0.139 0.3076 0.14 :
ol 6 90 3.037 77.140 0.729 18.517 0.061 1.54% 0.305 0.139 0.3076 0.14 )
r Note.- Density 0.0573 1b/in®(1.589 g/cc) i~
- Fiber volume fraction 67.5 % 9
b Void volume fraction 0.2 % -
"N GRAPHITE / EPOXY DISCONTINUOUS FIBER i
. r
: 6 0 8.125 206.375 0.733 18.618 0.060 1.524 1.2615 0.573 1.2686 0.577 :“
L -, 5 2.5 9.307 236.398 0.73 18.542 0.062 1.575 0.946 0.43 0.9514 0.432 :
’: | S 7.5 8.863 225.120 0.729 18.517 0.061 1.549 0.946 0.43 0.9514 0.432 .
6 12.5 6.933 176.098 0.731 18.567 0.061 1.549 0.946 0.43 0.9514 0.432 "
% 5 20 5.938 150.825 0.729 18.517 0.063 1.600 0.627 0.285 0.6316 0.287
0 6 45 4.537 115.240 0.722 18.339 0.061 1.549 0.305 0.139 0.3076 0.14 )
3 6 60 3.542 89.963 0.732 18.592 0.062 1.575 0.305 0.139 0.3076 0.14 t
v 5 75 3.063 77.788 0.725 18.415 0.062 1.575 0.305 0.139 0.3076 0.14 ¢
: 5 90 3.057 77.648 0.724 18.390 0.063 1.600 0.305 0.139 0.3076 0.14 {
. 1
.
: Note.- The fiber length for these specimens is 1/4 in (6.35 mm),
) Density 0.0573 1b/in’ (1.589 g/cc), and ~
: Fiber volume fraction 67.8 % 3

Void vclume fraction 0.67 %
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TABLE 4.2 (continuation)
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Description of off-axis fiber specimens tested with extensional vibration

No Fiber Length Width Thickness Mass 1 Mass 2
angle (in) (mm) (in) (mm) (in) (mm) (1b) (kg) (1b) (kg)
KEVLAR / EPOXY CONTINUOUS FIBER
4 0 8.375 212.725 0.755 19.177 0.053 1.346 1.2615 0.573 1.2686 0.577
4 2.5 7.914 201.016 0.733 18.618 0.053 1.346 1.2615 0.573 1.2686 0.577
4 7.5 7.899 200.635 0.734 18.644 0.054 1.372 0.946 0.43  0.9514 0.432
5 12.5 6.938 176.225 0.742 18.847 0.053 1.346 0.627 0.285 0.6316 0.287
3 20 4.464 113.386 0.753 19.126 0.054 1.372 0.627 0.285 0.6316 0.287
6 45 3.072 78.029 0.75 19.05 0.054 1.372 0.305 0.139 0.3076 0.14
4 60 2.089 53.061 0.742 18.847 0.054 1.372 0.305 0.139 0.3076 0.14
4 75 1.553 39.446 0.75 19.05 0.057 1.448 0.305 0.139 0.3076 0.14
4 90 1.442 36.627 0.762 19.355 0.055 1.397 0.305 0.139 0.3076 0.14

Note.~ Density 0.05 1b/in3(1.387 g/cc)
Fiber volume fraction 71.5 %

Void volume fraction 1.38 %
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Figure 3.1. Slicing graphite/epoxy prepreg tape
to produce discontinuous fibers,
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Figure 3.8. Kevlar/epoxy composite produced by
autoclave style press cure (scale 200:1).
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3.11.

Figure 3.106.

Equipment required

Moid to cdst neal resin plates,

to produce neat resin plates,
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Figure 3.12, Precision reciprocating grinder used to machiqe
graphite/epoxy and boron/epoxy composite specimens.

Figure 3,135, ‘tlectric band saw used to machine
Kevlar/epoxy composite Specimens,
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Figure 3.17.

Block diaygram of 1instrumentation for the
forced sinusoical vidration technigue,
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Figure 3.33. Block diagram of instrumentation for
flexural vibration tests.
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STORAGE MODULUS (GPa)
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STORAGE MODULUS (GPa)
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STORAGE MODULUS (GPa)
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